Exam 20: The Curl and Stokes Theorem

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let F=(ey+5x))i+(4y+zcosx5)j+(2z+5x)k\left. \vec { F } = \left( e ^ { y } + 5 x \right) \right) \vec { i } + \left( 4 y + z \cos x ^ { 5 } \right) \vec { j } + ( 2 z + 5 x ) \vec { k } Calculate the flux SFdA\int _ { S } \vec { F } \cdot \vec { d A } , where S is the sphere (x-2)2 + (y-3)2 + z2 = 44 oriented inward.

(Essay)
4.8/5
(37)

Let S be the closed surface which is the portion of the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 with 2z1- 2 \leq \boldsymbol { z } \leq 1 topped by the disk in the plane zˉ=1\bar { z } = 1 , oriented outward.Then the flux of r=xi+yj+zk\vec { r } = x \vec { i } + y \vec { j } + z \vec { k } through S is:

(Multiple Choice)
4.9/5
(30)

Suppose that the flux of a smooth vector field F\vec { F} out of a sphere of radius r centered at the origin is ar+br2a r + b r ^ { 2 } where a and b are constants.If F=CurlG { \vec { F } } = \operatorname { Curl } { \vec { G } } for a smooth vector field G,\vec { G } , find the values of a and b.

(Essay)
4.8/5
(33)

If cur1F=0\operatorname { cur } 1 { \vec { F} } = \vec { 0 } then by Stokes' Theorem the line integral Q˙Fˉ×dr\dot { \mathrm { Q } } { \bar { F } \times \vec { d r } } is equal to zero, where C is the curve y = x2, for 0 \le x \le 2.

(True/False)
4.9/5
(35)

Let F=4zi4xk\vec { F } = 4 z \vec { i } - 4 x \vec { k } Let C be the circle of radius a parameterized by x = a cos t, y = 0, z = a sin t, 0 \le t \le 2 π\pi and let S be the disk in the xz-plane enclosed by C, oriented in the positive y-direction. (a)Evaluate directly CFdr\int _ { C } \vec { F } \cdot d \vec { r } (b)Evaluate directly ScurlFdA\int _ { S } \operatorname { curl } { \vec { F } } \cdot d \vec { A } (c)Do these results contradict Stokes' Theorem?

(Essay)
4.9/5
(27)

Let S be the boundary surface of a solid region W with outward-pointing normal.Using an appropriate theorem, change the following flux integral into volume integral over W. S((4x+cosz)i+(3y+sinx2)j5zk)dA\int _ { S } \left( ( 4 x + \cos z ) \vec { i } + \left( 3 y + \sin x ^ { 2 } \right) \vec { j } - 5 z \vec { k } \right) \cdot d \vec { A }

(Essay)
4.8/5
(36)

True or false? If divF=4\operatorname { div } \vec { F } = 4 for all x, y, z and if S is a surface enclosing a volume V, then SFdV=4V\int _ { S } \vec { F } \cdot \vec { d{ V } } = 4 V

(Multiple Choice)
4.9/5
(32)

The figure below shows a vector field of the form The figure below shows a vector field of the form

(Short Answer)
4.7/5
(30)

Suppose that F\vec { F } is a vector field defined everywhere with constant negative divergence C.Decide if the following statement is true. There is  no oriented \text { no oriented } surface S for which Q^F×dA=0\hat { \mathrm { Q } } { \vec { F } \times \vec{ d A } } = 0

(True/False)
4.8/5
(19)

Suppose that F\vec { F } is a smooth vector field, defined everywhere. It is possible that SFdA=3r2+2r\int _ { S } \vec { F } \cdot d \vec { A } = 3 r ^ { 2 } + 2 r , where S is a sphere of radius r centered at the origin.

(True/False)
5.0/5
(31)

Let P be a plane through the origin with equation ax4y+3z=0a x - 4 y + 3 z = 0 Let F\vec { F } be a vector field with curl F=3i5j+2k { \vec {F} } = 3 \vec { i } - 5 \vec { j } + 2 \vec { k } Suppose Q˙F×dr=0\dot {\mathbf{Q} } {\vec{F} \times \vec{d r}=0} for any closed curve on the plane ax4y+3z=0a x - 4 y + 3 z = 0 Using Stokes' Theorem, determine the value of a.

(Essay)
4.8/5
(43)

(a)Is F=F1(y,z)i+F2(x,z)j+F3(x,y)k\vec { F } = F _ { 1 } ( y , z ) \vec { i } + F _ { 2 } ( x , z ) \vec { j } + F _ { 3 } ( x , y ) \vec { k } a divergence free vector field? (b)Do all divergence free vector fields have the form of the vector field in (a)? (c)If F\vec { F } has the form given in (a)can we conclude that SFdA=0\int _ { S } \vec { F } \cdot \vec { d A } = 0 for any closed surface S?

(Short Answer)
4.9/5
(33)

Consider the two-dimensional fluid flow given by F=(x2+y2)axi+(x2+y2)ayj\vec { F } = \left( x ^ { 2 } + y ^ { 2 } \right) ^ { a } x \vec { i } + \left( x ^ { 2 } + y ^ { 2 } \right) ^ { a } y \vec { j } where a is a constant. (We allow a to be negative, so F\vec { F } may or may not be defined at (0, 0).) (a)Is the fluid flowing away from the origin, toward it, or neither? (b)Calculate the divergence of F\vec { F} .Simplify your answer. (c)For what values of a is div F\vec { F} positive? Zero? Negative? (d)What does your answer to (c)mean in terms of flow? How does this fit in with your answer to (a)?

(Essay)
4.9/5
(30)

Let a=α1i+α2j+α3k\vec { a } = \alpha _ { 1 } \vec { i } + \alpha _ { 2 } \vec { j } + \alpha _ { 3 } \vec { k } be a nonzero constant vector and let r=xi+yj+zk\vec { r } = x \vec { i } + y \vec { j } + z \vec { k } .Suppose S is the sphere of radius one centered at the origin.There are two (related)reasons why S(a×r)dA=0\int _ { S } ( \vec { a } \times \vec { r } ) \cdot d \vec { A } = 0 .Select them both.

(Multiple Choice)
4.8/5
(36)

Suppose that F\vec { F } is a vector field defined everywhere with constant negative divergence C.Decide if the following statement is true and explain your answer. Q^F×dA<0\hat {\mathrm { Q }} { \vec { F } \times \vec{d A} } < 0 for every  oriented \text { oriented } surface S.

(Essay)
4.9/5
(34)

Let F=5xi+zj+(y+5x)k\vec { F } = 5 x \vec { i } + z \vec { j } + ( y + 5 x ) \vec { k } Use Stokes' Theorem to find Q˙F×dr\dot { \mathrm { Q } } { \vec { F } \times \overline { d r } } where C is a circle in the xz-plane of radius 66 , centered at (6,0,2)( 6,0 , - 2 ) oriented  clockw ise \text { clockw ise } when viewed from the positive y-axis.

(Essay)
4.8/5
(31)

Suppose W consists of the interior of two intersecting cylinders of radius 2.One cylinder is centered on the y-axis and extends from y = -5 to y = 5.The other is centered on the x-axis and extends from x = -5 to x = 5.Let S be the entire surface of W except for one circular end of one cylinder, namely the circular end centered at (0,5,0).The boundary of S is therefore the circle x2+z2=4,y=5x ^ { 2 } + z ^ { 2 } = 4 , y = 5 ; the surface S is oriented outward. Let F=(3x2+3z2)j=curl(z3i+y3jx3k)\vec { F } = \left( 3 x ^ { 2 } + 3 z ^ { 2 } \right) \vec { j } = \operatorname { curl } \left( z ^ { 3 } \vec { i } + y ^ { 3 } \vec { j } - x ^ { 3 } \vec { k } \right) . Then SFdA=Qπ\int _ { S } \vec { F } \cdot d \vec { A } = Q \pi .Find Q.

(Essay)
4.9/5
(43)

Suppose G\vec { G } is a vector field with the property that G=10zk\vec { G } = 10 z \vec { k } at every point of the surface r=0.5\| \vec { r } \| = 0.5 If divG=c\operatorname { div } \vec { G } = c \text {, } where c is a constant, find c.

(Essay)
4.8/5
(29)

Let F=(y2+4xcosz))i+(z3)j+(z24xy)k\left. { \vec { F} } = \left( y ^ { 2 } + 4 x \cos z \right) \right) \vec { i } + \left( - z ^ { 3 } \right) \vec { j } + \left( z ^ { 2 } - 4 x y \right) \vec { k } Find the divergence of F.\vec { F } .

(Essay)
4.7/5
(33)

Find curl(3yi+3xj+(x5+y5+z5)k)\operatorname { curl } \left( - 3 y \vec { i } + 3 x \vec { j } + \left( x ^ { 5 } + y ^ { 5 } + z ^ { 5 } \right) \vec { k } \right)

(Essay)
4.8/5
(37)
Showing 61 - 80 of 84
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)