Exam 20: The Curl and Stokes Theorem

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let G(x,y,z)=yi+xj+3xyzk\vec { G } ( x , y , z ) = - y \vec { i } + x \vec { j } + 3 x y z \vec { k } .Calculate div G\vec { G } .

(Essay)
4.9/5
(33)

The trumpet surface, S, is given parametrically by r(s,t)=s2costi+sj+s2sintk,0£s£5,0£t£2π\vec { r } ( s , t ) = s \vec { 2 } \cos t \vec { i } + s \vec { j } + s ^ { 2 } \sin t k , 0 £ s £ 5,0 £ t £ 2 \pi  The trumpet surface, S, is given parametrically by  \vec { r } ( s , t ) = s \vec { 2 } \cos t \vec { i } + s \vec { j } + s ^ { 2 } \sin t k , 0 £ s £ 5,0 £ t £ 2 \pi    If S has outward pointing normal, use an appropriate line integral to calculate  \hat { Q }  { \operatorname { curl } } ( z \vec { i } + \cos ( x + z ) \vec { j } - x \vec { k } ) \times \vec { d A } If S has outward pointing normal, use an appropriate line integral to calculate Q^curl(zi+cos(x+z)jxk)×dA\hat { Q } { \operatorname { curl } } ( z \vec { i } + \cos ( x + z ) \vec { j } - x \vec { k } ) \times \vec { d A }

(Essay)
4.9/5
(40)

Suppose SFdA=S(4xi6yj+2zk)dA\int _ { S } \vec { F } \cdot d \vec { A } = \int _ { S } ( 4 x \vec { i } - 6 y \vec { j } + 2 z \vec { k } ) \cdot d \vec { A } for any closed surface S in space with outward-pointing normal.What does this tell you about  div F ? \text { div } \vec { F } \text { ? }

(Essay)
4.7/5
(32)

For the following integral, say whether Stokes' Theorem, the Divergence Theorem, or neither applies. Q˙curl(2xi+zj+2y3k)×dA\dot { \mathrm { Q } } ^ { \operatorname { curl } } \left( 2 x \vec { i } + z \vec { j } + 2 y ^ { 3 } \vec { k } \right) \times \vec{ d A } where S is a triangular plane in space oriented  dow nw ard. \text { dow nw ard. }

(Multiple Choice)
4.8/5
(41)

Using either Stokes' theorem or the Divergence theorem (whichever is appropriate), evaluate Q˙((2x+cosyz)i+(5y+sin2z)j+(3z+x)k)×dA\dot{\mathrm{Q}}((2 x+\cos y z) \vec{i}+(5 y+\sin 2 z) \vec{j}+(3 z+x) \vec{k}) \times d \vec{A} where S is the sphere of radius 2 oriented outward and centered at the point (2,e25,π2)\left( 2 , e ^ { - 25 } , \pi ^ { 2 } \right)

(Essay)
4.8/5
(40)

Using either Stokes' theorem or the Divergence theorem (whichever is appropriate), evaluate the following: Q(4xi+3yj+3zk)×dr\mathrm { Q } ( - 4 x \vec { i } + 3 y \vec { j } + 3 z \vec { k } ) \times \vec { d r } where C is a closed loop parameterized by r(t)=(cost+sint)i+cos3tj+sin4tk\vec { r } ( t ) = ( \cos t + \sin t ) \vec { i } + \cos ^ { 3 } t \vec { j } + \sin ^ { 4 } t \vec { k }

(Short Answer)
4.9/5
(40)

Let F\vec {F } be a smooth velocity vector field describing the flow of a fluid.Suppose that divF(1,2,1)=10\operatorname { div } \vec { F } ( 1,2 , - 1 ) = 10 Will there be an inflow or outflow of fluid at the point (1, 2,-1)?

(Essay)
4.7/5
(36)

Let G\vec { G } be a smooth vector field with divG=3\operatorname { div } \vec { G } = 3 at every point in space and let S1 and S2 be spheres of radius r, oriented outward, centered at (0,0,0)and at (1,2,1), respectively. s1GdA=S2GdA\int _ { s _ { 1 } } \vec { G } \cdot d \vec { A } = \int _ { S _ { 2 } } \vec { G } \cdot d \vec { A } .

(True/False)
4.9/5
(36)

An oceanographic vessel suspends a paraboloid-shaped net below the ocean at depth of 750750 feet, held open at the top by a circular metal ring of radius 3030 feet, with bottom 7070 feet below the ring and just touching the ocean floor.Set up coordinates with the origin at the point where the net touches the ocean floor and with z measured upward.  An oceanographic vessel suspends a paraboloid-shaped net below the ocean at depth of  750  feet, held open at the top by a circular metal ring of radius  30  feet, with bottom  70  feet below the ring and just touching the ocean floor.Set up coordinates with the origin at the point where the net touches the ocean floor and with z measured upward.

(Essay)
4.7/5
(38)

Let

(Multiple Choice)
4.8/5
(42)

If divF=7\operatorname { div } \vec { F } = - 7 everywhere and S is a smooth surface (oriented outward)enclosing a volume W of size V find SFdA\int _ { S } \vec { F } \cdot \vec { d A } .

(Multiple Choice)
4.9/5
(25)

Let F=3xzi+4(yx)j+4xk{ \vec { F } } = - 3 x z \vec { i } + 4 ( y - x ) \vec { j } + 4 x \vec { k } (a)By direct computation, find the circulation of F\vec { F } around the circle of radius a, r(t)=αcosti+αsintj\vec { r } ( t ) = \alpha \cos t \vec { i } + \alpha \sin t \vec { j } for 0 \le t \le 2 π\pi . (b)Use this result to find the k\vec { k } component of curlF(0,0,0)\operatorname { curl } \vec { F } ( 0,0,0 )

(Essay)
4.8/5
(37)

Let F=4Zk\vec { F} = - 4 Z \vec { k } (a)Compute divF(0,0,0)\operatorname { div } \vec { F } ( 0,0,0 ) . (b) By direct computation, find the flux of F\vec { F } through a cube with edge length l, centered at the origin and edges parallel to the axes. (c)Explain how your answers in parts (b)are related to that of part (a).

(Essay)
4.7/5
(38)

Suppose that f(x,y,z)f ( x , y , z ) is defined and differentiable everywhere and satisfies the differential equation xfx+yfy+zfz=0x \frac { \partial f } { \partial x } + y \frac { \partial f } { \partial y } + z \frac { \partial f } { \partial z } = 0 .Let F=f(x,y,z)r { \vec { F } } = f ( x , y , z ) \vec { r } , where r=xi+yj+zk\vec { r } = x \vec { i } + y \vec { j } + z \vec { k } .Suppose that S is a closed surface and W is its interior.Find Q in the following equation: SFdA=QWf(x,y,z)dV\int _ { S } \vec { F } \cdot d \vec { A } = Q \int _ { W } f ( x , y , z ) d V .

(Short Answer)
4.7/5
(39)

Suppose that curl F(1,2,1)=3i2j+5k\vec { F } ( 1,2,1 ) = 3 \vec { i } - 2 \vec { j } + - 5 \vec { k } curl F(0,2,1)=6i+2j+5k\vec { F } ( 0,2,1 ) = 6 \vec { i } + 2 \vec { j } + 5 \vec { k } and curl F(1,3,1)=3i+2j+10k { \vec { F } } ( 1,3 , - 1 ) = - 3 \vec { i } + 2 \vec { j } + 10 \vec { k } Estimate the following line integrals. (a) C1Fdr\int _ { C _ { 1 } } \vec { F } \cdot d \vec { r } where C1 is given by r(t)=i+(3+0.1cost)j+(0.1sint1)k,0t2π\vec { r } ( t ) = \vec { i } + ( 3 + 0.1 \cos t ) \vec { j } + ( 0.1 \sin t - 1 ) \vec { k } , \quad 0 \leq t \leq 2 \pi (b) c2Fdr\int _ { c _ { 2 } } \vec { F } \cdot d \vec { r } where C2 is given by r(t)=0.1sinti+2j+(1+0.1cost)k,0t2π\vec { r } ( t ) = 0.1 \sin t \vec { i } + 2 \vec { j } + ( 1 + 0.1 \cos t ) \vec { k } , 0 \leq t \leq 2 \pi (c) C3Fdr\int _ { C _ { 3 } } \vec { F } \cdot d \vec { r } where C3 is given by r(t)=(1+0.1cost)i+(2+0.1sint)j+k,0t2π\vec { r } ( t ) = ( 1 + 0.1 \cos t ) \vec { i } + ( 2 + 0.1 \sin t ) \vec { j } + \vec { k } , \quad 0 \leq t \leq 2 \pi

(Essay)
4.8/5
(37)

Use the Divergence Theorem to find the flux of the vector field F=(4x3+4yz)i+(4y3+8xz)j+(4z3+16yx)k\vec { F } = \left( 4 x ^ { 3 } + 4 y z \right) \vec { i } + \left( 4 y ^ { 3 } + 8 x z \right) \vec { j } + \left( 4 z ^ { 3 } + 16 y x \right) \vec { k } through the cube 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1.

(Essay)
4.9/5
(43)

Let F=(ey+6x))i+(6y+zcosx6)j+(5z+6x)k\left. \vec { F } = \left( e ^ { y } + 6 x \right) \right) \vec { i } + \left( 6 y + z \cos x ^ { 6 } \right) \vec { j } + ( 5 z + 6 x ) \vec { k } Calculate div F.\vec { F} .

(Short Answer)
4.9/5
(30)

Let F\vec { F } be a smooth velocity vector field describing the flow of a fluid.Suppose that divF(1,2,1)=4\operatorname { div } \vec { F } ( 1,2 , - 1 ) = - 4 Estimate the value of SFdA\int _ { S }{ \vec { F } } \cdot \vec{ d A } where S is a sphere of radius 0.25 centered at (1, 2,-1)oriented outward.Give your answer to 4 decimal places.

(Short Answer)
4.9/5
(35)

For the following integral, say whether Stokes' Theorem, the Divergence Theorem, or neither applies. Q^(2xi+zj+5y3k)×dr\hat { Q } \left( 2 x \vec { i } + z \vec { j } + 5 y ^ { 3 } \vec { k } \right) \times \vec{ d r } where S is a triangular plane in space oriented upward.

(Multiple Choice)
4.8/5
(40)

Let a=a1i+α2i+α3i\vec { a } = a _ { 1 } \vec { i } + \alpha _ { 2 } \vec { i } + \alpha _ { 3 } \vec { i } be a constant vector and f(x, y, z)be a smooth function.Which statement is true?

(Multiple Choice)
4.9/5
(37)
Showing 21 - 40 of 84
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)