Exam 16: Integrating Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find a region R such that double integral R(2x2y2)dA\int _ { R } \left( 2 - x ^ { 2 } - y ^ { 2 } \right) d A has the largest value.

(Multiple Choice)
4.9/5
(29)

Consider the change of variables x = s + 5t, y = s - 3t. Find the absolute value of the Jacobian (x,y)(s,t)\left| \frac { \partial ( x , y ) } { \partial ( s , t ) } \right| .

(Short Answer)
4.9/5
(32)

Let W be the region between the cylinders x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 and x2+y2=36x ^ { 2 } + y ^ { 2 } = 36 in the first octant and under the plane z = 1.Evaluate WZdV\int _ { W } Z d V

(Essay)
4.8/5
(24)

Set up but do not evaluate a (multiple)integral that gives the volume of the solid bounded above by the sphere x2+y2+z2=2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 and below by the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } .

(Multiple Choice)
4.8/5
(47)

Consider the integral 66672x2f(x,y)dydx\int _ { - 6 } ^ { 6 } \int _ { 6 } ^ { \sqrt { 72 - x ^ { 2 } } } f ( x , y ) d y d x .Convert the integral to polar coordinates.

(Essay)
4.7/5
(35)

Evaluate the integral by interchanging the order of integration. 104x4ey2dydx\int _ { - 1 } ^ { 0 } \int _ { - 4 x } ^ { 4 } e ^ { y ^ { 2 } } d y d x .

(Short Answer)
4.7/5
(31)

Rewrite the integral 0204y2x2+y28x2y2(x2+y2)dzdxdy\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - y ^ { 2 } } } \int _ { \sqrt { x ^ { 2 } + y ^ { 2 } } } ^ { \sqrt { 8 - x ^ { 2 } - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) d z d x d y in spherical coordinates.You do not have to evaluate the integral.

(Essay)
5.0/5
(31)

If f and g are two continuous functions on a region R, then RfgdA=RfdARgdA\int _ { R } f \cdot g d A = \int _ { R } f d A \cdot \int _ { R } g d A .

(True/False)
4.9/5
(35)

For the following region, decide whether to integrate using polar or Cartesian coordinates.Write an iterated integral of an arbitrary function f(x, y)over the region. For the following region, decide whether to integrate using polar or Cartesian coordinates.Write an iterated integral of an arbitrary function f(x, y)over the region.

(Essay)
4.9/5
(35)

Evaluate the integral xx+3ydA\int _ { x } x + 3 y d A , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles x2+y2=25,x2+y2=16x ^ { 2 } + y ^ { 2 } = 25 , x ^ { 2 } + y ^ { 2 } = 16

(Essay)
4.7/5
(37)

Convert the integral 3309x2e(x2+y2)dydx\int _ { - 3 } ^ { 3 } \int _ { 0 } ^ { \sqrt { 9 - x ^ { 2 } } } e ^ { - \left( x ^ { 2 } + y ^ { 2 } \right) } d y d x to polar coordinates and hence evaluate it exactly.

(Essay)
4.8/5
(36)

Let W be the part of the solid sphere of radius 4, centered at the origin, that lies above the plane z = 2.Express WzdV\int _ { W } z d V in (a)Cartesian (b)Cylindrical (c)Spherical coordinates.

(Essay)
4.9/5
(37)

The joint density function for x, y is given by p(x,y)={1150ex/10ey/15x0,y00 otherwise p ( x , y ) = \left\{ \begin{array} { c c } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } & x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. Write down an iterated integral to compute the probability that x + y \le 10.You do not need to do the integral.

(Multiple Choice)
4.9/5
(34)

Evaluate the integral 024x204x2y24x2y2(x2+y2+z2)3/2dzdydx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { 0 } \int _ { - \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } d z d y d x in spherical coordinates.

(Essay)
4.8/5
(35)

Let R1 be the region 0 \le x \le 3, -2 \le y \le 4, and let R2 be the region 3 \le x \le 5, -2 \le y \le 4.Suppose that the average value of f over R1 is 6 and the average value over R2 is 7. Find the average value of f over R, 0x5,2y20 \leq x \leq 5 , - 2 \leq y \leq 2 .

(Short Answer)
4.9/5
(33)

Consider the integral 159x45f(x,y)dydx\int _ { 1 } ^ { 5 } \int _ { 9 x } ^ { 45 } f ( x , y ) d y d x Rewrite the integral with the integration performed in the opposite order.

(Multiple Choice)
4.9/5
(41)

Find the area of the part of the hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 .

(Multiple Choice)
4.9/5
(39)

Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where p(x,y)={ax+by,0x8,0y80 otherwise p ( x , y ) = \left\{ \begin{array} { c l } a x + b y , & 0 \leq x \leq 8,0 \leq y \leq 8 \\0 & \text { otherwise }\end{array} \right.

(Multiple Choice)
4.8/5
(38)

Sketch the region of integration of the following integral and then convert the expression to polar co-ordinates (you do not have to evaluate it). 02x4x2x5y5dydx\int _ { 0 } ^ { \sqrt { 2 } } \int _ { x } ^ { \sqrt { 4 - x ^ { 2 } } } x ^ { 5 } y ^ { 5 } d y d x

(Essay)
4.8/5
(41)

Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 0603cos4ysin(4x+5)dxdy\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { 3 } \cos 4 y \sin ( 4 x + 5 ) d x d y

(Essay)
4.8/5
(42)
Showing 41 - 60 of 76
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)