Exam 16: Integrating Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the integral 20204x24x2(x2+z2)7/2dzdxdy\int _ { - 2 } ^ { 0 } \int _ { - 2 } ^ { 0 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } \left( x ^ { 2 } + z ^ { 2 } \right) ^ { 7 / 2 } d z d x d y in cylindrical coordinates.

(Essay)
4.9/5
(33)

The region W is shown below.Write the limits of integration for wf(x,y,z)dV\int _ { w } f ( x , y , z ) d V in spherical coordinates.  The region W is shown below.Write the limits of integration for  \int _ { w } f ( x , y , z ) d V  in spherical coordinates.

(Multiple Choice)
4.8/5
(40)

Evaluate exactly the integral RydA\int _ { R } y d A , where R is the region shown below.  Evaluate exactly the integral  \int _ { R } y d A  , where R is the region shown below.

(Essay)
4.8/5
(35)

Set up an iterated integral for Wf(x,y,z)dV\int _ { W } f ( x , y , z ) d V , where W is the solid region bounded below by the rectangle 0 \le x \le 3, 0 \le y \le 1 and above by the surface z2+y2=1z ^ { 2 } + y ^ { 2 } = 1

(Multiple Choice)
4.9/5
(22)

Evaluate 111y209x2+y21+x2+y2dxdy\int _ { - 1 } ^ { - 1 } \int _ { \sqrt { 1 - y ^ { 2 } } } ^ { 0 } \frac { 9 \sqrt { x ^ { 2 } + y ^ { 2 } } } { 1 + x ^ { 2 } + y ^ { 2 } } d x d y Provide an exact answer.

(Essay)
4.9/5
(37)

Let W be the region between the spheres x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 and x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .Given that W(x2+y2+z2)1/2dV=15π\int _ { W } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 1 / 2 } d V = 15 \pi , evaluate the integral w(64x2+36y2+144z2)1/2dV\int _ { w } \left( 64 x ^ { 2 } + 36 y ^ { 2 } + 144 z ^ { 2 } \right) ^ { 1 / 2 } d V , where Wˉ\bar{W} is the region between the ellipsoids x232+y242+z222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y242+z222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 4 .

(Multiple Choice)
4.9/5
(32)

Estimate \int R f(x, y)dA using the table of values below, where R is the rectangle 0 \le x \le 4, 0 \le y \le 6 y x 0 3 6 0 2 3 4 2 6 4 3 4 18 14 12

(Short Answer)
4.9/5
(39)

Consider the change of variables x = s + 3t, y = s - 2t. Let R be the region bounded by the lines 2x + 3y = 1, 2x + 3y = 4, x - y = -3, and x - y = 2.Find the region T in the st-plane that corresponds to region R. Use the change of variables to evaluate R2x+3ydA\int _ { R } 2 x + 3 y d A

(Short Answer)
4.8/5
(27)

Find the mass of the solid cylinder x2+y225,4z5x ^ { 2 } + y ^ { 2 } \leq 25 , \quad 4 \leq z \leq 5 with density function f(x,y,z)=z+4(x2+y2)f ( x , y , z ) = z + 4 \left( x ^ { 2 } + y ^ { 2 } \right)

(Essay)
4.8/5
(29)

Let x and y have joint density function p(x,y)={x+y if 0x1,0y10 otherwise p ( x , y ) = \left\{ \begin{array} { l l } x + y & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1 \\0 & \text { otherwise }\end{array} \right. Find the probability that 0.5 \le x \le 0.6.

(Short Answer)
4.8/5
(37)

Reverse the order of integration for the following integral. 13x294x12f(x,y)dydx\int _ { 1 } ^ { 3 } \int _ { x ^ { 2 } - 9 } ^ { 4 x - 12 } f ( x , y ) d y d x

(Multiple Choice)
4.9/5
(38)

Let R be the ice-cream cone lying inside the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 and inside the cone z=3(x2+y2)z = \sqrt { 3 \left( x ^ { 2 } + y ^ { 2 } \right) } .Find the center of mass of R.

(Essay)
4.9/5
(39)

Jane and Mary will meet outside the library at noon.Jane's arrival time is x and Mary's arrival time is y, where x and y are measured in minutes after noon.The probability density function for the variation in x and y is p(x,y)=1180ex/12ey/15p ( x , y ) = \frac { 1 } { 180 } e ^ { - x / 12 } e ^ { - y / 15 } After Jane arrives, she will wait up to 15 minutes for Mary, but Mary won't wait for Jane.Find the probability that they meet.

(Short Answer)
4.8/5
(32)

An arrow strikes a circular target at random at a point (x, y), using a coordinate system with origin at the center of the target.The probability density function for the point where the arrow strikes is given by p(x,y)=1πex2y2p ( x , y ) = \frac { 1 } { \pi } e ^ { - x ^ { 2 } - y ^ { 2 } } What is the probability that the arrow strikes within 0.45 feet of the center of the target.

(Short Answer)
4.8/5
(38)

Calculate the following integral: Rr5cosθdA\int _ { R } r ^ { 5 } \cos \theta d A where R is the shaded region shown below. ·  Calculate the following integral:  \int _ { R } r ^ { 5 } \cos \theta d A  where R is the shaded region shown below. ·

(Essay)
4.8/5
(40)

Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where p(x,y)={ax+by if 0x6,0y60 otherwise p ( x , y ) = \left\{ \begin{array} { c c } a x + b y & \text { if } 0 \leq x \leq 6,0 \leq y \leq 6 \\0 & \text { otherwise }\end{array} \right.

(Essay)
4.8/5
(37)

Choose the most appropriate coordinate system and set up a triple integral, including limits of integration, for a density function f(x, y, z)over the given region. Choose the most appropriate coordinate system and set up a triple integral, including limits of integration, for a density function f(x, y, z)over the given region.

(Multiple Choice)
4.8/5
(31)

Evaluate 0πxπ(sin2yysin2y)dydx\int _ { 0 } ^ { \pi } \int _ { x } ^ { \pi } \left( \frac { \sin 2 y } { y } - \sin 2 y \right) d y d x by first reversing the order of integration.

(Short Answer)
4.9/5
(35)

Find the volume of the solid bounded by the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and the plane z = 1.

(Essay)
4.8/5
(43)

Evaluate the iterated integral. 1e01/xcos(4xy)dydx\int_{1}^{e} \int_{0}^{1 / x} \cos (4 x y) d y d x

(Essay)
5.0/5
(31)
Showing 21 - 40 of 76
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)