Exam 14: Differentiating Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

A partial derivative is a specific example of a directional derivative.

(True/False)
4.8/5
(45)

Let z=f(x,y)=e(x/y)z = f ( x , y ) = e ^ { ( x / y ) } .Find the instantaneous rate of change of f at the point (5,5)( 5,5 ) in the direction of the point (8,11)( 8,11 ) .

(Essay)
4.9/5
(32)

Given that ggdg(1,1,5)=3i3j+kg \operatorname { gd } g ( 1,1,5 ) = 3 \vec { i } - 3 \vec { j } + \vec { k } , in which of the following directions does g increase the fastest?

(Multiple Choice)
4.8/5
(30)

If f(x,y)=sin(x)+y2f ( x , y ) = \sin ( x ) + y ^ { 2 } x(u, v)= uv and y(u, v)= u + 3v. If H(u, v)= f(x(u, v), y(u, v)), what is Hv(0,-2)? Give your answer to 4 decimal places.

(Essay)
4.8/5
(32)

If f(x,y)=ln(y)f ( x , y ) = \ln ( y ) , then f(x,y)=1y\nabla f ( x , y ) = \frac { 1 } { y } .

(True/False)
4.8/5
(38)

The quadratic Taylor approximations of f(x,y)f ( x , y ) at the points (11),(1,1)( - 1 - 1 ) , ( 1,1 ) , (2,0)and (0,2)are given respectively by: (x,y)=-3+3(x+1+4(y+1 (x,y)=1-3(x-1+4(y-1 (x,y)=-2-9(x-2)-6(x-2-2 (x,y)=8+3x+24(y-2)+22(y-2 Determine fy (0,2)( 0,2 ) .

(Essay)
4.8/5
(40)

The tangent plane to the surface z=xsin(x/y),y0z = x \sin ( x / y ) , y \neq 0 at any point passes through the origin.

(True/False)
4.9/5
(38)

Let g(x,y)=(x2+y2)f(x,y)g ( x , y ) = \left( x ^ { 2 } + y ^ { 2 } \right) f ( x , y ) , where f(x,y)={yyxxxyf ( x , y ) = \left\{ \begin{array} { l l } - | y | & | y | \leq | x | \\- | x | & | x | \leq | y |\end{array} \right. g is differentiable at (0,0).

(True/False)
4.8/5
(32)

The depth of a pond at the point with coordinates (x, y)is given by h(x,y)=5x2+4y2h ( x , y ) = 5 x ^ { 2 } + 4 y ^ { 2 } .(Assume that x, y, and h are measured in feet.)If a boat at the point (-3, -5)is sailing in the direction of the vector 5i+j5 \vec { i } + \vec { j } , then at what rate is the depth changing?

(Essay)
4.9/5
(37)

Arrange the following quantities in ascending order.(The level curves of z=f(x,y)z = f ( x , y ) are shown in the figure.Assume that the scales on the x- and y-axes are the same.) fy(P),fy(Q),fx(R),fx(S)f _ { y } ( P ) , f _ { y } ( Q ) , f _ { x } ( R ) , - f _ { x } ( S )  Arrange the following quantities in ascending order.(The level curves of  z = f ( x , y )  are shown in the figure.Assume that the scales on the x- and y-axes are the same.)  f _ { y } ( P ) , f _ { y } ( Q ) , f _ { x } ( R ) , - f _ { x } ( S )

(Essay)
4.8/5
(42)

Let f(x,y,z)=x3+3xz+4yz+z2f ( x , y , z ) = x ^ { 3 } + 3 x z + 4 y z + z ^ { 2 } .Find  Let  f ( x , y , z ) = x ^ { 3 } + 3 x z + 4 y z + z ^ { 2 }  .Find   , where  \vec { v }  is a unit vector in the direction of  - \vec { i } + \vec { j } - \vec { k }  . , where v\vec { v } is a unit vector in the direction of i+jk- \vec { i } + \vec { j } - \vec { k } .

(Essay)
4.7/5
(45)

Find the equation of the tangent plane to the surface 3xyz+x3+y3+z3=153 x y z + x ^ { 3 } + y ^ { 3 } + z ^ { 3 } = 15 at (1, -3, 2).

(Multiple Choice)
4.8/5
(33)

The quantity z can be expressed as a function of x and y as follows: z = f(x, y).Now x and y are themselves functions of r and θ\theta , as follows: x=g(r,θ)x = g ( r , \theta ) and y=h(r,θ)y = h ( r , \theta ) Suppose you know that g(1, π\pi /2)= -1, and h(1, π\pi /2)= 1.In addition, you are told that (-1,1)=1,(-1,1)=6, 1, =7 1, =7, 1, =6, 1, =4 Find zr(1,π/2)\frac { \partial z } { \partial r } ( 1 , \pi / 2 )

(Essay)
4.8/5
(36)

Find the following partial derivative: fxy if f(x,y)=x7y8f ( x , y ) = x ^ { 7 } y ^ { 8 } .

(Multiple Choice)
4.8/5
(38)

Find x(ln(x5y+5))\frac { \partial } { \partial x } \left( \ln \left( x ^ { 5 } y + 5 \right) \right) .

(Multiple Choice)
4.7/5
(30)

Suppose that the price P (in dollars)to purchase a used car is a function of C, its original cost (in dollars), and its age A (in years).So P = f(C,A). What is the sign of PC?\frac { \partial P } { \partial C } ?

(Multiple Choice)
4.8/5
(29)

Let Γ(u,v,w)\Gamma ( u , v , w ) be a function of three variables with Fu+Fw=1F _ { u } + F _ { w } = - 1 .Suppose that G(x,y)=F(x,xy,x)G ( x , y ) = F ( x , x - y , x ) .Simplify Gx+GyG _ { x } + G _ { y } .

(Multiple Choice)
4.9/5
(33)

Consider the level curves shown for the function z = f(x, y).  Consider the level curves shown for the function z = f(x, y).   Determine the sign of  f _ { y x } ( - 1 , - 5 ) Determine the sign of fyx(1,5)f _ { y x } ( - 1 , - 5 )

(Multiple Choice)
4.7/5
(31)

Find the directional derivative of f(x,y,z)=3xyz24xzf ( x , y , z ) = 3 x y z ^ { 2 } - 4 x z at the point (3, 3, 2), in the direction of the vector v=2i+3jk\vec { v } = 2 \vec { i } + 3 \vec { j } - \vec { k }

(Essay)
4.9/5
(37)

If f(x,y)=sin(x)+y2f ( x , y ) = \sin ( x ) + y ^ { 2 } x(u, v)= uv and y(u, v)= u + 4v. If H(u, v)= f(x(u, v), y(u, v)), what is H(0,-1)? Give your answer to 4 decimal places.

(Short Answer)
4.9/5
(30)
Showing 21 - 40 of 129
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)