Exam 14: Differentiating Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let u=12(i+j)\vec { u } = \frac { 1 } { \sqrt { 2 } } ( \vec { i } + \vec { j } ) and let w=113(2i+3j)\vec { w } = \frac { 1 } { \sqrt { 13 } } ( 2 \vec { i } + 3 \vec { j } ) .Suppose that ft(1,1)=42f _ { t } ( 1,1 ) = 4 \sqrt { 2 } and ft(1,1)=3f _ { t } ( 1,1 ) = 3 .Find fw(1,1)f _ { \mathfrak { w } } ( 1,1 ) .

(Essay)
4.7/5
(32)

Determine the tangent plane to z=f(x,y)=3ex2yz = f ( x , y ) = 3 e ^ { x - 2 y } at (x, y)= (2, 1).

(Essay)
4.7/5
(40)

If fx(0, 0)exists and fy(0, 0)exists, then f is differentiable at (0, 0).

(True/False)
4.9/5
(40)

Consider the function g(x,y,z)=x2+y2+z2g ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } (a)Describe the level set g = 16. (b)Find a vector perpendicular to the tangent plane to the level set g = 16 at the point (-1, 2, 2).

(Essay)
4.8/5
(28)

If z(x,y)=f(x2y2)z ( x , y ) = f \left( x ^ { 2 } - y ^ { 2 } \right) , then simplify yzx+xzyy \frac { \partial z } { \partial x } + x \frac { \partial z } { \partial y } .

(Essay)
4.8/5
(47)

gradf(a,b)\operatorname { grad } f ( a , b ) is perpendicular to the graph of z=f(x,y)z = f ( x , y ) at the point (a,b,f(a,b))( a , b , f ( a , b ) ) .

(True/False)
4.7/5
(38)

If u\vec { u } is a unit vector and the level curves of f(x, y)are given below, then at point P we have fu(P)=gradf.f_{u}(P)=\operatorname{grad} f .  If  \vec { u }  is a unit vector and the level curves of f(x, y)are given below, then at point P we have  f_{u}(P)=\operatorname{grad} f .

(True/False)
4.9/5
(27)

Consider the function g(x,y)=x15y15g ( x , y ) = x ^ { \frac { 1 } { 5 } } y ^ { \frac { 1 } { 5 } } (a)Find gx(x, y)and gy(x, y)for (x, y) \neq (0, 0). (b)Use the limit definition of partial derivative to show that gx(0, 0)= 0 and gy(0, 0)= 0. (c)Are the functions gx and gy continuous at (0, 0)? Explain. (d)Is g differentiable at (0, 0)? Explain.

(Essay)
4.7/5
(30)

Let z=f(x,y)=e(x/y)z = f ( x , y ) = e ^ { ( x / y ) } .Find the tangent plane to f at the point (5,5)( 5,5 ) .

(Essay)
4.8/5
(38)

If fx=fy\frac { \partial f } { \partial x } = \frac { \partial f } { \partial y } everywhere, then f(x, y)is a constant.

(True/False)
4.7/5
(35)

Given that f(2, 4)= 1.5 and f(2.1, 4.4)= 2.1, estimate the value of fu(2,4)f _ { u } ( 2,4 ) , where u\vec { u } is the unit vector in the direction of 1i+4j1 \vec { i } + 4 \vec { j } Give your answer to four decimal places.

(Essay)
4.8/5
(37)

The figure below shows the graph of z = f(x, y)and its intersection with various planes.(The x and y-axes have the same scale.) What is the sign of fy(0,1)f _ { y } ( 0,1 ) ?  The figure below shows the graph of z = f(x, y)and its intersection with various planes.(The x and y-axes have the same scale.) What is the sign of  f _ { y } ( 0,1 )  ?

(Multiple Choice)
4.9/5
(47)

Using the contour diagram for f(x, y), find the sign of fyy(P)f _ { y y } ( P ) given that fxx(P)< 0.  Using the contour diagram for f(x, y), find the sign of  f _ { y y } ( P )  given that f<sub>xx</sub>(P)< 0.

(Multiple Choice)
4.7/5
(27)

Let f(x,y,z)=x2+y2+z2f ( x , y , z ) = x ^ { 2 } + y ^ { 2 } + z ^ { 2 } .Then  grad f(0,0,0)=0\text { grad } f ( 0,0,0 ) = \overrightarrow { 0 } .

(True/False)
4.9/5
(38)

Let f(x,y)=x2+2xcos2yf ( x , y ) = x ^ { 2 } + 2 x \cos ^ { 2 } y .Give a linear approximation of f at the point (2,π/4)( 2 , \pi / 4 ) .

(Essay)
4.7/5
(35)

Find an equation for the tangent plane to the ellipsoid (x1)2+4(y2)2+(z3)2=17( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } + ( z - 3 ) ^ { 2 } = 17 at the point (3,1,0)( 3,1,0 ) .

(Essay)
5.0/5
(31)

Suppose that the function f(x,y)f ( x , y ) and the linear function L(x,y)=43x+5yL ( x , y ) = 4 - 3 x + 5 y satisfy f(x,y)L(x,y)5(x2+y2)| f ( x , y ) - L ( x , y ) | \leq 5 \left( x ^ { 2 } + y ^ { 2 } \right) for points (x,y)( x , y ) close to (0,0)( 0,0 ) .Find fx(0,0)f _ { x } ( 0,0 ) and fy(0,0)f _ { y } ( 0,0 ) .

(Essay)
4.8/5
(44)

Consider the surface z=xyz = x y and the point P=(4,3,12)P = ( - 4,3 , - 12 ) .Find a vector normal to the surface at P.

(Essay)
4.7/5
(29)

There exists a function f(x, y)with fx = 2y and fy = 3x.

(True/False)
4.8/5
(32)

The table below gives values of a function f(x, y)near x = 1, y = 2. The table below gives values of a function f(x, y)near x = 1, y = 2.   Give the equation of the tangent plane to the graph z = f(x, y)at x = 1, y = 2. Give the equation of the tangent plane to the graph z = f(x, y)at x = 1, y = 2.

(Multiple Choice)
4.7/5
(29)
Showing 81 - 100 of 129
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)