Exam 14: Differentiating Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let w = 3x cos y.If x=u2+v2x = u ^ { 2 } + v ^ { 2 } y=v/u1y=v / \mathcal u_{1} find \partial w/ \partial u and \partial w/ \partial v at the point (u,v)=(2,3)( u , v ) = ( 2,3 ) .Give your answers to 2 decimal places.

(Essay)
4.9/5
(44)

Let f(x,y)=x2+3y23xf ( x , y ) = x ^ { 2 } + 3 y ^ { 2 } - 3 x Find the gradient vector of f at the point (-1, 2).

(Multiple Choice)
4.8/5
(32)

Find the differential of the function f(x,y)=x2+y2f ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } at the point (3, 4). A point is measured to be 3 units from the y-axis with an error of ±0.01 and 4 units from the x-axis with an error of ±0.02.Approximate the error in computing its distance from the origin.

(Essay)
4.9/5
(39)

Consider the surface given as the graph of z=f(x,y)z = f ( x , y ) .Let u=126(i+5j)\vec { u } = \frac { 1 } { \sqrt { 26 } } ( \vec { i } + 5 \vec { j } ) and let v=120(4i2j)\vec { v } = \frac { 1 } { \sqrt { 20 } } ( 4 \vec { i } - 2 \vec { j } ) .Suppose that f0(1,3)=2126;f0(1,3)=420;f(1,3)=7f_{0}(1,3)=\frac{21}{\sqrt{26}} ; f_{0}(1,3)=\frac{-4}{\sqrt{20}} ; f(1,3)=-7 .Find the equation of the tangent plane to the surface at the point (1,3)( 1,3 ) .

(Essay)
4.8/5
(35)

Consider the surface z=xyz = x y and the point P=(4,3,12)P = ( - 4,3 , - 12 ) .Find an equation for the plane tangent to the surface at P.

(Essay)
4.9/5
(38)

Find the following partial derivative: HP(2, 1)if H(P,T)=2P3P+TH ( P , T ) = \frac { 2 P } { 3 P + T } Give your answer to 4 decimal places.

(Essay)
4.8/5
(40)

Suppose that as you move away from the point (2, 0, 2), the function increases most rapidly in the direction 0.6i+0.8j0.6 \vec { i } + 0.8 \vec { j } and the rate of increase of f in this direction is 7.At what rate is f increasing as you move away from (2, 0, 2)in the direction of i+j+k\vec { i } + \vec { j } + \vec { k } ? Give your answer to 4 decimal places.

(Short Answer)
4.9/5
(38)

If v\vec { v } is a unit vector and the level curves of f(x, y)are given below, then at point P we have fv(P)=gradfcosθf _ { \vec { v } } ( P ) = \| \operatorname { grad } f \| \cos \theta  If  \vec { v }  is a unit vector and the level curves of f(x, y)are given below, then at point P we have  f _ { \vec { v } } ( P ) = \| \operatorname { grad } f \| \cos \theta

(True/False)
4.9/5
(39)

The quadratic Taylor approximations of f(x,y)f ( x , y ) at the points (11),(1,1)( - 1 - 1 ) , ( 1,1 ) , (2,0)and (0,2)are given respectively by: (x,y)=-3+3(x+1+4(y+1 (x,y)=1-3(x-1+4(y-1 (x,y)=-2-9(x-2)-6(x-2-2 (x,y)=8+3x+24(y-2)+22(y-2 Find an approximate value of f(0.2,1.9)f ( 0.2,1.9 ) .

(Essay)
4.8/5
(28)

Find \partial z/ \partial x if z=3lnx+sin(xy5)z = - 3 \ln x + \sin \left( x y ^ { 5 } \right)

(Essay)
4.8/5
(34)

Let f(x,y)=4x29y2f ( x , y ) = 4 x ^ { 2 } - 9 y ^ { 2 } .What is the equation of the tangent plane to the graph of z=f(x,y)z = f ( x , y ) at the point (5,1)( 5,1 ) ?

(Essay)
4.9/5
(30)

If  grad f=gradg\text { grad } f = \operatorname { grad } g , then f=gf = g .

(True/False)
4.9/5
(42)

Suppose f(x, y)is a function of x and y and define g(u,v)=f(eu+cosv,eu+sin(v))g ( u , v ) = f \left( e ^ { u } + \cos v , e ^ { u } + \sin ( v ) \right) Find gu(0,0)g _ { u } ( 0,0 ) given that f(0,0)=5,f(2,1)=1,fx(0,0)=2,fx(1,2)=1,fx(2,1)=3f ( 0,0 ) = 5 , f ( 2,1 ) = - 1 , f _ { x } ( 0,0 ) = 2 , f _ { x } ( 1,2 ) = 1 , f _ { x } ( 2,1 ) = - 3 \text {, } and g(0,0)=1,g(2,1)=1,fy(0,0)=2,fy(2,1)=3,f(1,2)=7g ( 0,0 ) = - 1 , g ( 2,1 ) = - 1 , f _ { y } ( 0,0 ) = 2 , f _ { y } ( 2,1 ) = - 3 , f ( 1,2 ) = 7

(Essay)
4.8/5
(43)

The table below gives values of a function f(x, y)near x = 1, y = 2.  The table below gives values of a function f(x, y)near x = 1, y = 2.   Estimate  f _ { x } ( 0,1.5 )  . Estimate fx(0,1.5)f _ { x } ( 0,1.5 ) .

(Essay)
4.8/5
(37)

Suppose that f(x,y)=x2eyf ( x , y ) = x ^ { 2 } e ^ { y } Find an equation for the tangent plane to f at the point (3, 0).

(Multiple Choice)
4.9/5
(34)

Find the equation of the tangent plane to x2+2xy+4y+6=z2x ^ { 2 } + 2 x y + 4 y + 6 = z ^ { 2 } at the point (-4, 1, 3).

(Multiple Choice)
4.7/5
(40)

Let f(x,y)=x2+3y24xf ( x , y ) = x ^ { 2 } + 3 y ^ { 2 } - 4 x What is the maximum rate of change of f at (2, 1)?

(Essay)
4.9/5
(33)

Find an equation for the tangent plane to the graph of f(x,y)=exsinyf ( x , y ) = e ^ { x \sin y } at (x,y)=(2,6π)( x , y ) = ( 2,6 \pi )

(Essay)
4.8/5
(39)

Estimate the value of fy(1,0)f _ { y } ( 1,0 ) from the given contour diagram of f.  Estimate the value of  f _ { y } ( 1,0 )  from the given contour diagram of f.

(Essay)
4.7/5
(32)

Find the points on the ellipsoid x2+2y2+z2=7x ^ { 2 } + 2 y ^ { 2 } + z ^ { 2 } = 7 where the tangent plane is parallel to the plane 2x+2yz=0- 2 x + 2 y - z = 0 .

(Essay)
4.9/5
(38)
Showing 41 - 60 of 129
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)