Exam 14: Differentiating Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Given the contour diagram shown below (a)Sketch a graph of f(1, y). (b)Sketch a graph of f(x, 0). Given the contour diagram shown below (a)Sketch a graph of f(1, y). (b)Sketch a graph of f(x, 0).

(Essay)
4.8/5
(29)

If z=f(x,y)z = f ( x , y ) and x=s+t,y=stx = s + t , y = s - t , then simplify (zs)(zt)\left(\frac{\partial z}{\partial s}\right)\left(\frac{\partial z}{\partial t}\right) in terms of fxf _ { x } and fyf _ { y } .

(Essay)
4.9/5
(36)

In an electric circuit, two resistors (of resistance R1 and R2, respectively)are connected so that the combined resistance of the circuit, R, is given by 1R=1R1+1R2\frac { 1 } { R } = \frac { 1 } { R _ { 1 } } + \frac { 1 } { R _ { 2 } } Find RR1\frac { \partial R } { \partial R _ { 1 } } .

(Essay)
4.7/5
(38)

Given that fx(x,y)=6xy+y2exy2f_{x}(x, y)=6 x y+y^{2} e^{xy^{2}} and fy(x,y)=3x2+2xyexy2f _ { y } ( x , y ) = 3 x ^ { 2 } + 2 x y e ^ { x y ^ { 2 } } Suppose that f(1, 1)= 4.Find the quadratic Taylor polynomial of f(x, y)at (1, 1).

(Essay)
4.8/5
(35)

Suppose that fx(2, 1)= 2.2, fx(2.5, 1)= 1, fx(2, 1.5)= 1.8, fy(2, 1)= -0.8, fy(2.5, 1)= -1.2 and fy(2, 1.5)= -1.4. If f(2,1)=4f ( 2,1 ) = 4 estimate the value of f(1.85, 0.8)using a quadratic Taylor polynomial about (2,1). Use difference quotients to approximate all second derivatives.

(Short Answer)
4.8/5
(25)

For the function g(x, y)with contour diagram below: For the function g(x, y)with contour diagram below:   Find the direction in which g is increasing the fastest at the point (1, 1). Find the direction in which g is increasing the fastest at the point (1, 1).

(Essay)
4.8/5
(32)

The monthly mortgage payment in dollars, P, for a house is a function of three variables P = f(A, r, N), where A is the amount borrowed in dollars, r is the interest rate, and N is the number of years before the mortgage is paid off.It is given that: f(100000,7,20)=775.29, f(100000,8,20)=836.44, f(100000,7,25)=706.77 f(120000,7,20)=930.35, f(120000,8,20)=1003.72, f(120000,7,25)=848.13 Estimate the value of fr(100000,7,20)\left. \frac { \partial f } { \partial r } \right| _ { ( 100000,7,20 ) }

(Essay)
4.8/5
(37)

Suppose f(x,y)=(ln(x+3y))yf ( x , y ) = ( \ln ( x + 3 y ) ) ^ { y } . Use a difference quotient to estimate fx(2,1)f _ { x } ( 2,1 ) and fy(2,1)f _ { y } ( 2,1 ) with h = 0.01.Give your answers to 3 decimal places.

(Essay)
4.9/5
(34)

Let U(x,t)=e(xct)2U ( x , t ) = e ^ { - ( x - c t ) ^ { 2 } } .Simplify UttC2UxxU _ { t t } - C ^ { 2 } U _ { x x } .

(Multiple Choice)
4.9/5
(28)
Showing 121 - 129 of 129
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)