Exam 14: Vector-Valued Functions and Motion in Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -  Prove that ab(r1(t)+r2(t))dt=abr1(t)dt+abr2(t)dt\text { Prove that } \int _ { a } ^ { b } \left( \mathbf { r } _ { 1 } ( t ) + r _ { 2 } ( t ) \right) d t = \int _ { a } ^ { b } r _ { 1 } ( t ) d t + \int _ { a } ^ { b } r _ { 2 } ( t ) d t

(Essay)
4.8/5
(35)

Find the curvature of the curve r(t). -r(t) = (10 + 6 cos 8t) i - (4 + 6 sin 8t)j + 3k

(Multiple Choice)
4.9/5
(31)

Evaluate the integral. - 0π/4[(2sec2t)i(3+sint)j(10secttant)k)]dt\left. \int _ { 0 } ^ { \pi / 4 } \left[ \left( 2 \sec ^ { 2 } t \right) \mathbf { i } - ( 3 + \sin t ) \mathbf { j } - ( 10 \sec t \tan t ) \mathbf { k } \right) \right] d t

(Multiple Choice)
4.9/5
(46)

 For the curve r(t), write the acceleration in the form aTT + anN. \text { For the curve } r ( t ) \text {, write the acceleration in the form aTT } + \text { anN. } -r(t) = (cosh t)i + (sinh t)j + tk

(Multiple Choice)
4.9/5
(45)

Solve the initial value problem. -Differential Equation: drdt=(9t25)ij+11+tk\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = \left( 9 \mathrm { t } ^ { 2 } - 5 \right) \mathbf { i } - \mathbf { j } + \frac { 1 } { \sqrt { 1 + \mathrm { t } } } \mathbf { k } Initial Condition: r(0)=9i+5j+11k\mathbf { r } ( 0 ) = - 9 \mathbf { i } + 5 \mathbf { j } + 11 \mathbf { k }

(Multiple Choice)
4.8/5
(41)

Solve the initial value problem. -Differential Equation: drdt=9ti+4tj+7tk\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = - 9 \mathrm { ti } + 4 \mathrm { tj } + 7 \mathrm { tk } Initial Condition: r(0)=7i+4k\mathbf { r } ( 0 ) = - 7 \mathbf { i } + 4 \mathbf { k }

(Multiple Choice)
4.9/5
(35)

Find the curvature of the space curve. - r(t)=409(1+t)3/2i+409(1t)3/2j+103tk\mathbf { r } ( \mathrm { t } ) = \frac { 40 } { 9 } ( 1 + t ) ^ { 3 / 2 } \mathbf { i } + \frac { 40 } { 9 } ( 1 - t ) ^ { 3 / 2 } \mathbf { j } + \frac { 10 } { 3 } t \mathbf { k }

(Multiple Choice)
4.9/5
(46)

Find T, N, and B for the given space curve. -r(t) = (8t sin t + 8cos t)i + (8t cos t - 8 sin t)j - 5k

(Multiple Choice)
5.0/5
(39)

Evaluate the integral. - 01[6ti+12t2j6(1+t)4k]dt\int _ { 0 } ^ { 1 } \left[ 6 t i + 12 t ^ { 2 } j - \frac { 6 } { ( 1 + t ) ^ { 4 } } k \right] d t

(Multiple Choice)
4.7/5
(40)

Solve the problem. Unless stated otherwise, assume that the projectile flight is ideal, that the launch angle is measured from the horizontal, and that the projectile is launched from the origin over a horizontal surface -A spring gun at ground level fires a tennis ball at an angle of 3333 ^ { \circ } . The ball lands 12 m12 \mathrm {~m} away. What was the ball's initial speed? Round your answer to the nearest tenth.

(Multiple Choice)
4.8/5
(46)

For the curve r(t), find an equation for the indicated plane at the given value of t. - r(t)=(10tsint+10cost)i+(10tcost10sint)j+2k; normal plane at t=5.5π\mathbf { r } ( \mathrm { t } ) = ( 10 \mathrm { t } \sin t + 10 \cos \mathrm { t } ) \mathbf { i } + ( 10 \mathrm { t } \cos t - 10 \sin t ) \mathbf { j } + 2 \mathbf { k } ; \text { normal plane at } t = 5.5 \pi

(Multiple Choice)
4.8/5
(32)

Solve the problem. -Find the values of v0v _ { 0 } in the equation e=r0v02GM1e = \frac { r _ { 0 } v _ { 0 } ^ { 2 } } { G M } - 1 that make the orbit described by r=(1+e)r01+ecosθr = \frac { ( 1 + e ) r _ { 0 } } { 1 + e \cos \theta } parabolic.

(Multiple Choice)
4.8/5
(31)

Solve the problem. Unless stated otherwise, assume that the projectile flight is ideal, that the launch angle is measured from the horizontal, and that the projectile is launched from the origin over a horizontal surface -A fan in the bleachers at Wrigley Field throws an opposing player's home run baseball back onto the playing field. Assume that the fan is 30 feet above the field and that the ball is launched at an angle of 3535 ^ { \circ } . When will the ball hit the ground if its initial speed is 25ft/sec25 \mathrm { ft } / \mathrm { sec } ? Round your answer to the nearest tenth.

(Multiple Choice)
4.9/5
(34)

Provide an appropriate response. -Show that if a particle's velocity vector is always orthogonal to its acceleration vector then the particle's speed is constant.

(Essay)
4.8/5
(33)

Provide an appropriate response. -Prove that if u\mathbf { u } is a differentiable function of t\mathrm { t } and f\mathrm { f } is a differentiable scalar function of t\mathrm { t } , then ddt(fu)=dfdtu+fdudt\frac { d } { d t } ( f u ) = \frac { d f } { d t } \mathbf { u } + f \frac { d u } { d t } \text {. }

(Essay)
4.8/5
(36)

Solve the initial value problem. -Differential Equation: drdt=32(t+3)1/2i+etj\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = \frac { 3 } { 2 } ( \mathrm { t } + 3 ) ^ { 1 / 2 } \mathbf { i } + \mathrm { e } ^ { \mathrm { t } } \mathbf { j } Initial Condition: r(0)=0\mathbf { r } ( 0 ) = 0

(Multiple Choice)
4.9/5
(36)

Find T, N, and B for the given space curve. - r(t)=43(1+t)3/2i+43(1t)3/2j+1tkr ( t ) = \frac { 4 } { 3 } ( 1 + t ) ^ { 3 / 2 } \mathbf { i } + \frac { 4 } { 3 } ( 1 - t ) ^ { 3 / 2 } \mathbf { j } + 1 \mathrm { tk }

(Multiple Choice)
4.9/5
(36)

Find the length of the indicated portion of the curve. - r(t)=(etcost)i+(etsint)j+7etk,ln2t0r ( t ) = \left( e ^ { t } \cos t \right) i + \left( e ^ { t } \sin t \right) j + 7 e ^ { t } k ^ { \prime } , - \ln 2 \leq t \leq 0

(Multiple Choice)
4.8/5
(36)

Solve the problem. -The orbit of a satellite had a period of T=93.11\mathrm { T } = 93.11 minutes. Calculate the semimajor axis of the orbit. (Earth's mass =5.975×1024 kg= 5.975 \times 10 ^ { 24 } \mathrm {~kg} and G=6.6720×1011Nm2 kg2\mathrm { G } = 6.6720 \times 10 ^ { - 11 } \mathrm { Nm } ^ { 2 } \mathrm {~kg} ^ { - 2 } ).

(Multiple Choice)
4.8/5
(38)

Evaluate the integral. -Evaluate the integral. -

(Multiple Choice)
4.8/5
(33)
Showing 81 - 100 of 142
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)