Exam 14: Vector-Valued Functions and Motion in Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -Show that a planet in a circular orbit moves with constant speed.

(Essay)
4.9/5
(35)

Calculate the arc length of the indicated portion of the curve r(t). -Following the curve r(t)=5ti+(12cost)j+(12sint)kr ( t ) = 5 t i + ( 12 \cos t ) j + ( 12 \sin t ) k in the direction of increasing of arc length, find the point that lies 26π26 \pi units away from the point where t=0t = 0 .

(Multiple Choice)
4.7/5
(33)

Solve the problem. Unless stated otherwise, assume that the projectile flight is ideal, that the launch angle is measured from the horizontal, and that the projectile is launched from the origin over a horizontal surface -A projectile is fired at a speed of 720 m/sec720 \mathrm {~m} / \mathrm { sec } at an angle of 4545 ^ { \circ } . How long will it take to get 18 km18 \mathrm {~km} downrange? Round your answer to the nearest whole number.

(Multiple Choice)
4.8/5
(33)

Provide an appropriate response. -Derive the equations x=+ 1- \alpha y=+ 1- \alpha+ 1-kt- by solving the following initial value problem for a vector r\mathbf { r } in the plane. Differential equation =-g-=-- Initial conditions: (0) =+ (0)== \alpha + \alpha The drag coefficient k\mathrm { k } is a positive constant representing resistance due to air density, vo and α\alpha are the projectile's initial speed and launch angle, and gg is the acceleration of gravity.

(Essay)
4.7/5
(32)

Provide an appropriate response. -A human cannonball is to be fired with an initial speed of 80ft/sec80 \mathrm { ft } / \mathrm { sec } . The circus performer hopes to land on a cushion located 190 feet downrange at the same height as the muzzle of the cannon. The circus is being held in a large room with a flat ceiling 33 feet higher than the muzzle. Can the performer be fired to the cushion without striking the ceiling? If so, what is the proper firing angle? ( g=32ft/sec2\mathrm { g } = 32 \mathrm { ft } / \sec ^ { 2 } )

(Essay)
4.9/5
(40)

Find the curvature of the space curve. - r(t)=5ti+(4+8cos32t)j+(4+8sin32)k\mathbf { r } ( \mathrm { t } ) = 5 \mathrm { ti } + \left( 4 + 8 \cos \frac { 3 } { 2 } \mathrm { t } \right) \mathbf { j } + \left( 4 + 8 \sin \frac { 3 } { 2 } \right) \mathbf { k }

(Multiple Choice)
4.9/5
(28)

Find the curvature of the curve r(t). -r(t) = (8 + cos 9t - sin 9t)i + (5 + sin 9t + cos 9t)j + 7k

(Multiple Choice)
4.9/5
(38)

The position vector of a particle is r(t). Find the requested vector. -The velocity at t=0t = 0 for r(t)=ln(t33t2+4)i2t+36j5cos(t)k\mathbf { r } ( \mathrm { t } ) = \ln \left( \mathrm { t } ^ { 3 } - 3 \mathrm { t } ^ { 2 } + 4 \right) \mathbf { i } - \sqrt { 2 \mathrm { t } + 36 } \mathbf { j } - 5 \cos ( \mathrm { t } ) \mathbf { k }

(Multiple Choice)
4.9/5
(41)

Calculate the arc length of the indicated portion of the curve r(t). - r(t)=(2cos35t)j+(2sin35t)k;35πt710πr ( t ) = \left( 2 \cos ^ { 3 } 5 t \right) \mathbf { j } + \left( 2 \sin ^ { 3 } 5 t \right) \mathbf { k } ; \frac { 3 } { 5 } \pi \leq t \leq \frac { 7 } { 10 } \pi

(Multiple Choice)
4.9/5
(37)

 For the curve r(t), write the acceleration in the form aTT + anN. \text { For the curve } r ( t ) \text {, write the acceleration in the form aTT } + \text { anN. } -r(t) = (t + 10)i + (ln(cos t) - 6)j + 2k

(Multiple Choice)
4.7/5
(39)

Solve the problem. -The orbit of a satellite had a semimajor axis of a=6955 kma = 6955 \mathrm {~km} . Calculate the period of the satellite. (Earth's mass =5.975×1024 kg= 5.975 \times 10 ^ { 24 } \mathrm {~kg} and G=6.6720×1011Nm2 kg2\mathrm { G } = 6.6720 \times 10 ^ { - 11 } \mathrm { Nm } ^ { 2 } \mathrm {~kg} - 2 ).

(Multiple Choice)
4.8/5
(22)

Solve the problem. Unless stated otherwise, assume that the projectile flight is ideal, that the launch angle is measured from the horizontal, and that the projectile is launched from the origin over a horizontal surface -An athlete puts a 16-lb shot at an angle of 3939 ^ { \circ } to the horizontal from 6.1ft6.1 \mathrm { ft } above the ground at an initial speed of 47ft/sec47 \mathrm { ft } / \mathrm { sec } . How far forward does the shot travel before it hits the ground? Round your answer to the nearest tenth.

(Multiple Choice)
4.8/5
(41)

Find the principal unit normal vector N for the curve r(t). -r(t) = (10 sin t)i + (10 cos t)j + 9k

(Multiple Choice)
4.9/5
(37)

For the curve r(t), find an equation for the indicated plane at the given value of t. - r(t)=(3sin53t+7)i+(3cos20t)6)j+12kk\left. \mathbf { r } ( \mathrm { t } ) = \left( 3 \sin \frac { 5 } { 3 } \mathrm { t } + 7 \right) \mathbf { i } + ( 3 \cos 20 \mathrm { t } ) - 6 \right) \mathbf { j } + 12 \mathrm { k } \mathbf { k } ; osculating plane at t=2.5πt = 2.5 \pi .

(Multiple Choice)
4.8/5
(32)

 For the curve r(t), write the acceleration in the form aTT + anN. \text { For the curve } r ( t ) \text {, write the acceleration in the form aTT } + \text { anN. } -r(t) = (6t sin t + 6 cos t)i + (6t cos t - 6 sin t)j + 3k

(Multiple Choice)
4.9/5
(39)

For the curve r(t), find an equation for the indicated plane at the given value of t. - r(t)=409(1+t)3/2i+409(1t)3/2j+103tkr ( t ) = \frac { 40 } { 9 } ( 1 + t ) ^ { 3 / 2 } \mathbf { i } + \frac { 40 } { 9 } ( 1 - t ) ^ { 3 / 2 } \mathbf { j } + \frac { 10 } { 3 } t \mathbf { k } ; osculating plane att=0a t \mathrm { t } = 0

(Multiple Choice)
4.8/5
(41)

For the curve r(t), find an equation for the indicated plane at the given value of t. - r(t)=(t+6)i+(ln(cost)8)j+7k,π/2<t<π2;\mathbf { r } ( \mathrm { t } ) = ( \mathrm { t } + 6 ) \mathbf { i } + ( \ln ( \cos \mathrm { t } ) - 8 ) \mathbf { j } + 7 \mathbf { k } , - \pi / 2 < \mathrm { t } < \pi \cdot 2 ; rectifying plane att=π4\mathrm { at } \mathrm {} \mathrm { t } = \frac { \pi } { 4 } .

(Multiple Choice)
5.0/5
(35)

Find the unit tangent vector of the given curve. - r(t)=(5sin39t)i+(5cos39t)jr ( t ) = \left( 5 \sin ^ { 3 } 9 t \right) i + \left( 5 \cos ^ { 3 } 9 t \right) \mathbf { j }

(Multiple Choice)
4.7/5
(28)

Provide an appropriate response. -The following equations each describe the motion of a particle. For which path is the particle's speed constant? (1) r(t)=t3i+t2jr ( t ) = t ^ { 3 } i + t ^ { 2 } j (2) r(t)=cos(8t)i+sin(6t)jr ( t ) = \cos ( 8 t ) i + \sin ( 6 t ) j (3) r(t)=ti+tjr ( t ) = t i + t j (4) r(t)=cos(5t2)i+sin(5t2)jr ( t ) = \cos \left( - 5 t ^ { 2 } \right) \mathbf { i } + \sin \left( - 5 t ^ { 2 } \right) \mathbf { j }

(Multiple Choice)
4.9/5
(38)

Solve the initial value problem. -Differential Equation: d2rdt2=(8t3)i\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } = ( 8 \mathrm { t } - 3 ) \mathbf { i } Initial Conditions: drdtr=0=k,r(0)=8i+7j+6k\left. \frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } \right| _ { \mathrm { r } = 0 } = - \mathbf { k } , \mathrm { r } ( 0 ) = 8 \mathbf { i } + 7 \mathbf { j } + 6 \mathbf { k }

(Multiple Choice)
4.9/5
(25)
Showing 101 - 120 of 142
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)