Exam 14: Vector-Valued Functions and Motion in Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Find the velocity vector in terms of ur and uθ\text { Find the velocity vector in terms of } u _ { r } \text { and } u _ { \theta } \text {. } - r=eaθ and dθdt=3\mathrm { r } = \mathrm { e } ^ { \mathrm { a } \theta } \text { and } \frac { \mathrm { d } \theta } { \mathrm { dt } } = 3

(Multiple Choice)
4.8/5
(40)

Solve the problem. Unless stated otherwise, assume that the projectile flight is ideal, that the launch angle is measured from the horizontal, and that the projectile is launched from the origin over a horizontal surface -An ideal projectile is launched from level ground at a launch angle of 2626 ^ { \circ } and an initial speed of 48 m/sec48 \mathrm {~m} / \mathrm { sec } . How far away from the launch point does the projectile hit the ground?

(Multiple Choice)
4.8/5
(34)

Provide an appropriate response. -What two angles of elevation will enable a projectile to reach a target 17 km downrange on the same level as the gun if the projectile's initial speed is 420 m/sec? Assume there is no wind resistance.

(Multiple Choice)
4.8/5
(30)

Evaluate the integral. - 03[(31+t)i(5t2)j+(12t(1+t2)2)k]dt\int _ { 0 } ^ { 3 } \left[ \left( \frac { 3 } { \sqrt { 1 + t } } \right) i - \left( 5 t ^ { 2 } \right) j + \left( \frac { 12 t } { \left( 1 + t ^ { 2 } \right) ^ { 2 } } \right) k \right] d t

(Multiple Choice)
4.8/5
(35)

For the curve r(t), find an equation for the indicated plane at the given value of t. - r(t)=(t9)i+(ln(sect)1)j+7k,π/2<t<π/2\mathbf { r } ( \mathrm { t } ) = ( \mathrm { t } - 9 ) \mathbf { i } + ( \ln ( \sec \mathrm { t } ) - 1 ) \mathbf { j } + 7 \mathbf { k } , - \pi / 2 < \mathrm { t } < \pi / 2 ; normal plane at t=10πt = 10 \pi .

(Multiple Choice)
4.8/5
(38)

Solve the problem. Unless stated otherwise, assume that the projectile flight is ideal, that the launch angle is measured from the horizontal, and that the projectile is launched from the origin over a horizontal surface -A projectile is fired with an initial speed of 512 m/sec512 \mathrm {~m} / \mathrm { sec } at an angle of 4545 ^ { \circ } . What is the greatest height reached by the projectile? Round your answer to the nearest tenth.

(Multiple Choice)
5.0/5
(31)

Calculate the arc length of the indicated portion of the curve r(t). - r(t)=62t3/2i+(9tsint)j+(9tcost)k;3t7r ( t ) = 6 \sqrt { 2 } t ^ { 3 / 2 } \mathbf { i } + ( 9 t \sin t ) \mathbf { j } + ( 9 t \cos t ) \mathbf { k } ; - 3 \leq t \leq 7

(Multiple Choice)
4.9/5
(39)

Provide an appropriate response. -  Prove that if v and u are differentiable functions of t, then ddt(u+v)=dudt+dvdt\text { Prove that if } \mathbf { v } \text { and } \mathbf { u } \text { are differentiable functions of } t \text {, then } \frac { \mathrm { d } } { \mathrm { dt } } ( \mathbf { u } + \mathbf { v } ) = \frac { \mathrm { d } \mathbf { u } } { \mathrm { dt } } + \frac { \mathrm { d } \mathbf { v } } { \mathrm { dt } } \text {. }

(Essay)
4.9/5
(33)

Find the unit tangent vector of the given curve. - r(t)=(2cos6t)i+(2sin6t)j5tkr ( t ) = ( 2 \cos 6 t ) i + ( 2 \sin 6 t ) j - 5 t k

(Multiple Choice)
4.9/5
(29)

The position vector of a particle is r(t). Find the requested vector. -The acceleration at t=π4t = \frac { \pi } { 4 } for r(t)=(2sin2t)i(2cos2t)j+(5csc2t)kr ( t ) = ( 2 \sin 2 t ) \mathbf { i } - ( 2 \cos 2 t ) \mathbf { j } + ( 5 \csc 2 t ) \mathbf { k }

(Multiple Choice)
4.8/5
(33)

Solve the problem. -At time t = 0 a particle is located at the point (4, -3, 2). It travels in a straight line to the point (6, -2, 1), has speed 2 at (4, -3, 2) and constant acceleration 6i - j - k. Find an equation for the position vector r(t) of the particle at time t.

(Multiple Choice)
4.8/5
(34)

Solve the initial value problem. -Differential Equation: drdt=i+(4t310t)j+1t+2k\frac { d \mathbf { r } } { d t } = \mathbf { i } + \left( 4 t ^ { 3 } - 10 t \right) j + \frac { 1 } { t + 2 } \mathbf { k } Initial Condition: r(0)=2j+(ln2)k\mathbf { r } ( 0 ) = 2 \mathrm { j } + ( \ln 2 ) \mathbf { k }

(Multiple Choice)
4.9/5
(34)

Provide an appropriate response. -The following equations each describe the motion of a particle. For which path is the particle's velocity vector alv orthogonal to its acceleration vector? (1) r(t)=t5i+t3jr ( t ) = t ^ { 5 } i + t ^ { 3 } j (2) r(t)=cos(10t)i+sin(9t)jr ( t ) = \cos ( 10 t ) \mathbf { i } + \sin ( 9 t ) \mathbf { j } (3) r(t)=ti+t3jr ( t ) = t i + t ^ { 3 } j (4) r(t)=cos(4t)i+sin(4t)jr ( t ) = \cos ( 4 t ) i + \sin ( 4 t ) j

(Multiple Choice)
4.8/5
(30)

Provide an appropriate response. -Derive the equations x=+ \alpha t y=+ \alpha t- by solving the following initial value problem for a vector r\mathbf { r } in the plane. Differential equation d2rdt2=gj\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } = - \mathrm { gj } Initial conditions: (0)=+ (0)=\alpha + \alpha

(Essay)
4.7/5
(36)

Find T, N, and B for the given space curve. - r(t)=(8+6sin23t)i+(4+6cos23t)j+3tkr ( t ) = \left( 8 + 6 \sin \frac { 2 } { 3 } t \right) i + \left( 4 + 6 \cos \frac { 2 } { 3 } t \right) j + 3 t k

(Multiple Choice)
4.9/5
(37)

Solve the initial value problem. -Differential Equation: drdt=(sec2t)i+(4t36)j\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = \left( \sec ^ { 2 } \mathrm { t } \right) \mathbf { i } + \left( 4 \mathrm { t } ^ { 3 } - 6 \right) \mathbf { j } Initial Condition: r(0)=4j\mathbf { r } ( 0 ) = - 4 \mathbf { j }

(Multiple Choice)
4.9/5
(33)

 For the smooth curve r(t), find the parametric equations for the line that is tangent to r at the given parameter value t=t0\text { For the smooth curve } r ( t ) \text {, find the parametric equations for the line that is tangent to } r \text { at the given parameter value } t = t _ { 0 } \text {. } - r(t)=(9tant)i(3sint)j+(10cos2t)k;t0=π4\mathbf { r } ( \mathrm { t } ) = ( 9 \tan \mathrm { t } ) \mathbf { i } - ( 3 \sin \mathrm { t } ) \mathbf { j } + \left( 10 \cos ^ { 2 } \mathrm { t } \right) \mathbf { k } ; \mathrm { t } _ { 0 } = \frac { \pi } { 4 }

(Multiple Choice)
4.8/5
(33)

Solve the initial value problem. -Differential Equation: d2rdt2=3t2itj\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } = 3 \mathrm { t } ^ { 2 } \mathbf { i } - \mathrm { tj } Initial Conditions: drdtr=0=4i,r(0)=10i3k\left. \frac { \mathrm { d } r } { \mathrm { dt } } \right| _ { \mathrm { r } = 0 } = - 4 \mathbf { i } , \mathrm { r } ( 0 ) = 10 \mathbf { i } - 3 \mathbf { k }

(Multiple Choice)
4.9/5
(41)

Find the principal unit normal vector N for the curve r(t). -r(t) = (2t sin t + 2 cos t)i + (2t cos t - 2 sin t))k

(Multiple Choice)
4.9/5
(39)

Solve the problem. -A space shuttle is in a circular orbit 250 km250 \mathrm {~km} above the Earth's surface. Use Kepler's third law (with a=\mathrm { a } = Earth's radius +250 km)+ 250 \mathrm {~km} ) to find the orbital period of the satellite. (G=6.67×1011Nm2 kg2\left( \mathrm { G } = 6.67 \times 10 ^ { - 11 } \mathrm { Nm } ^ { 2 } \mathrm {~kg} ^ { - 2 } \right. , M=5.97×1024 kg\mathrm { M } = 5.97 \times 10 ^ { 24 } \mathrm {~kg} and Earth's radius is 6.37×106 m6.37 \times 10 ^ { 6 } \mathrm {~m} ).

(Multiple Choice)
4.8/5
(34)
Showing 41 - 60 of 142
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)