Exam 14: Vector-Valued Functions and Motion in Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the torsion of the space curve. - r(t)=(2+10sin25t)i+3tj+(2+10cos25t)k\mathbf { r } ( \mathrm { t } ) = \left( 2 + 10 \sin \frac { 2 } { 5 } \mathrm { t } \right) \mathbf { i } + 3 \mathrm { tj } + \left( 2 + 10 \cos \frac { 2 } { 5 } \mathrm { t } \right) \mathbf { k }

(Multiple Choice)
4.7/5
(34)

The position vector of a particle is r(t). Find the requested vector. -The acceleration at t=0t = 0 for r(t)=t2i+(8t310)j+43tkr ( t ) = t ^ { 2 } i + \left( 8 t ^ { 3 } - 10 \right) j + \sqrt { 4 - 3 t } k

(Multiple Choice)
4.8/5
(35)

Solve the initial value problem. -Differential Equation: drdt=(3sec3ttan3t)i+t(t2+7)2j+t2k\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = ( 3 \sec 3 \mathrm { t } \tan 3 \mathrm { t } ) \mathrm { i } + \frac { \mathrm { t } } { \left( \mathrm { t } ^ { 2 } + 7 \right) ^ { 2 } } \mathrm { j } + \mathrm { t } ^ { 2 } \mathbf { k } Initial Condition: r(0)=9i+5514j6k\mathbf { r } ( 0 ) = 9 \mathrm { i } + \frac { 55 } { 14 } \mathrm { j } - 6 \mathbf { k }

(Multiple Choice)
4.9/5
(34)

Calculate the arc length of the indicated portion of the curve r(t). - r(t)=4ti+(6cos12t)j+(6sin12t)k;8t1\mathbf { r } ( \mathrm { t } ) = 4 \mathrm { ti } + \left( 6 \cos \frac { 1 } { 2 } \mathrm { t } \right) \mathbf { j } + \left( 6 \sin \frac { 1 } { 2 } \mathrm { t } \right) \mathbf { k } ; - 8 \leq \mathrm { t } \leq 1

(Multiple Choice)
4.9/5
(30)

Provide an appropriate response. -A baseball is hit when it is 3.13.1 feet above the ground. It leaves the bat with an initial speed of 150ft/sec150 \mathrm { ft } / \mathrm { sec } , making an angle of 2424 ^ { \circ } with the horizontal. Assuming a drag coefficient k=0.12k = 0.12 , find the range and the flight time of the ball. For projectiles with linear drag: x=+ 1- \alpha, y=+ 1- \alpha+ 1-kt- where k\mathrm { k } is the drag coefficient, v0\mathrm { v } _ { 0 } and α\alpha are the projectile's initial speed and launch angle, and gg is the acceleratic of gravity (32ft/sec2)\left( 32 \mathrm { ft } / \mathrm { sec } ^ { 2 } \right) .

(Multiple Choice)
4.9/5
(36)

The position vector of a particle is r(t). Find the requested vector. -The acceleration at t=π8t = \frac { \pi } { 8 } for r(t)=(10t3t3)i+2tan(2t)j+e5tk\mathbf { r } ( \mathrm { t } ) = \left( 10 \mathrm { t } - 3 \mathrm { t } ^ { 3 } \right) \mathbf { i } + 2 \tan ( 2 \mathrm { t } ) \mathbf { j } + \mathrm { e } ^ { 5 } \mathrm { t } \mathbf { k }

(Multiple Choice)
4.7/5
(34)

The position vector of a particle is r(t). Find the requested vector. -The velocity at t=4t = 4 for r(t)=(84t2)i+(6t+2)je3tk\mathbf { r } ( \mathrm { t } ) = \left( 8 - 4 \mathrm { t } ^ { 2 } \right) \mathbf { i } + ( 6 \mathrm { t } + 2 ) \mathbf { j } - \mathrm { e } ^ { - 3 \mathrm { t } } \mathbf { k }

(Multiple Choice)
4.9/5
(39)

Find the length of the indicated portion of the curve. - r(t)=(5+2t)i+(6+3t)j+(46t)k,1t0\mathbf { r } ( \mathrm { t } ) = ( 5 + 2 \mathrm { t } ) \mathbf { i } + ( 6 + 3 \mathrm { t } ) \mathbf { j } + ( 4 - 6 \mathrm { t } ) \mathbf { k } , - 1 \leq \mathrm { t } \leq 0

(Multiple Choice)
4.7/5
(35)

The position vector of a particle is r(t). Find the requested vector. -The acceleration at t=1t = 1 for r(t)=t5i+7ln(14+t)j+3tk\mathbf { r } ( \mathrm { t } ) = \mathrm { t } ^ { 5 } \mathbf { i } + 7 \ln \left( \frac { 1 } { 4 + \mathrm { t } } \right) \mathbf { j } + \frac { 3 } { \mathrm { t } } \mathbf { k }

(Multiple Choice)
4.8/5
(40)

 For the curve r(t), write the acceleration in the form aTT + anN. \text { For the curve } r ( t ) \text {, write the acceleration in the form aTT } + \text { anN. } - r(t)=43(1+t)3/2i+43(1t)3/2j+1tk\mathbf { r } ( \mathrm { t } ) = \frac { 4 } { 3 } ( 1 + \mathrm { t } ) ^ { 3 / 2 } \mathbf { i } + \frac { 4 } { 3 } ( 1 - t ) ^ { 3 / 2 } \mathbf { j } + 1 \mathrm { t } \mathbf { k }

(Multiple Choice)
4.9/5
(40)

Find the torsion of the space curve. -r(t) = (5t sin t + 5 cos t)i + (5t cos t) - 5 sin t)j - 6k

(Multiple Choice)
4.9/5
(37)

Find the torsion of the space curve. - r(t)=(t9)i+(ln(sect)+8)j10k,π/2<t<π/2\mathbf { r } ( \mathrm { t } ) = ( \mathrm { t } - 9 ) \mathbf { i } + ( \ln ( \sec t ) + 8 ) \mathbf { j } - 10 \mathbf { k } , - \pi / 2 < \mathrm { t } < \pi / 2

(Multiple Choice)
4.8/5
(36)

Find the unit tangent vector of the given curve. - r(t)=(5+2t8)i+(3+10t8)j+(5+11t8)k\mathbf { r } ( \mathrm { t } ) = \left( 5 + 2 \mathrm { t } ^ { 8 } \right) \mathbf { i } + \left( 3 + 10 \mathrm { t } ^ { 8 } \right) \mathbf { j } + \left( 5 + 11 t ^ { 8 } \right) \mathbf { k }

(Multiple Choice)
4.8/5
(34)

 Find the acceleration vector in terms of ur and uθ\text { Find the acceleration vector in terms of } u _ { r } \text { and } u _ { \theta } \text {. } - r=a(5cosθ) and dθdt=9r = a ( 5 - \cos \theta ) \text { and } \frac { d \theta } { d t } = 9

(Multiple Choice)
4.9/5
(28)

The position vector of a particle is r(t). Find the requested vector. -The velocity at t=0t = 0 for r(t)=cos(5t)i+7ln(t2)jt310k\mathbf { r } ( t ) = \cos ( 5 t ) \mathbf { i } + 7 \ln ( t - 2 ) \mathbf { j } - \frac { t ^ { 3 } } { 10 } \mathbf { k }

(Multiple Choice)
4.7/5
(43)

 For the curve r(t), write the acceleration in the form aTT + anN. \text { For the curve } r ( t ) \text {, write the acceleration in the form aTT } + \text { anN. } - r(t)=(8sin58t+8)i+(8cos58t3)j+12tk\mathbf { r } ( \mathrm { t } ) = \left( 8 \sin \frac { 5 } { 8 } \mathrm { t } + 8 \right) \mathrm { i } + \left( 8 \cos \frac { 5 } { 8 } \mathrm { t } - 3 \right) \mathrm { j } + 12 \mathrm { tk }

(Multiple Choice)
4.9/5
(40)

Calculate the arc length of the indicated portion of the curve r(t). - r(t)=2t4i+10t4j+11t4k,1t3r ( t ) = 2 t ^ { 4 } \mathbf { i } + 10 t ^ { 4 } \mathbf { j } + 11 t ^ { 4 } k _ { , } - 1 \leq t \leq 3

(Multiple Choice)
4.8/5
(33)

Calculate the arc length of the indicated portion of the curve r(t). - r(t)=(46t)i+(9+9t)j+(2t2)k,10t1\mathbf { r } ( t ) = ( 4 - 6 t ) \mathbf { i } + ( 9 + 9 t ) \mathbf { j } + ( 2 t - 2 ) \mathbf { k } , - 10 \leq t \leq 1

(Multiple Choice)
5.0/5
(33)

 Find the arc length parameter along the curve from the point where t=0 by evaluating s=0tv(τ)dτ\text { Find the arc length parameter along the curve from the point where } t = 0 \text { by evaluating } s = \int _ { 0 } ^ { t } | v ( \tau ) | d \tau \text {. } -r(t) = (2 + 2t)i + (5 + 3t)j + (5 - 6t)k

(Multiple Choice)
4.9/5
(37)

For the curve r(t), find an equation for the indicated plane at the given value of t. -r(t) = (t2 - 8)i + (2t - 5)j + 8k; osculating plane at t = 6.

(Multiple Choice)
4.9/5
(33)
Showing 121 - 140 of 142
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)