Exam 14: Vector-Valued Functions and Motion in Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Calculate the arc length of the indicated portion of the curve r(t). - r(t)=(7tsint+7cost)i+(7tcost7sint)j;3t5r ( t ) = ( 7 t \sin t + 7 \cos t ) \mathbf { i } + ( 7 t \cos t - 7 \sin t ) \mathbf { j } ; - 3 \leq t \leq 5

(Multiple Choice)
4.7/5
(36)

Solve the problem. Unless stated otherwise, assume that the projectile flight is ideal, that the launch angle is measured from the horizontal, and that the projectile is launched from the origin over a horizontal surface -A baseball is hit when it is 3.2ft3.2 \mathrm { ft } above the ground. It leaves the bat with an initial velocity of 142ft/sec142 \mathrm { ft } / \mathrm { sec } at a launch angle of 3030 ^ { \circ } . At the instant the ball is hit, an instantaneous gust of wind blows against the ball, adding a component of 10.3i(ft/sec- 10.3 \mathrm { i } ( \mathrm { ft } / \mathrm { sec } ) to the ball's initial velocity. How high does the baseball go? Round your answer to the nearest tenth.

(Multiple Choice)
4.8/5
(28)

If r(t) is the position vector of a particle in the plane at time t, find the indicated vector. -Find the acceleration vector. r(t) = (cos 4t)i + (5 sin t)j

(Multiple Choice)
4.8/5
(38)

 Find the arc length parameter along the curve from the point where t=0 by evaluating s=0tv(τ)dτ\text { Find the arc length parameter along the curve from the point where } t = 0 \text { by evaluating } s = \int _ { 0 } ^ { t } | v ( \tau ) | d \tau \text {. } -r(t) = (5cos t)i + (5sin t)j + 2tk

(Multiple Choice)
4.9/5
(39)

Find the curvature of the curve r(t). - r(t)=(3+ln(sect))i+(1+t)k,π/2<t<π/2\mathbf { r } ( \mathrm { t } ) = ( 3 + \ln ( \sec t ) ) \mathbf { i } + ( 1 + \mathrm { t } ) \mathbf { k } , - \pi / 2 < \mathrm { t } < \pi / 2

(Multiple Choice)
4.8/5
(32)

Find the torsion of the space curve. - r(t)=(t2)i+(ln(cost)4)j+6k,π/2<t<π/2\mathbf { r } ( \mathrm { t } ) = ( \mathrm { t } - 2 ) \mathbf { i } + ( \ln ( \cos \mathrm { t } ) - 4 ) \mathbf { j } + 6 \mathbf { k } , - \pi / 2 < \mathrm { t } < \pi / 2

(Multiple Choice)
4.7/5
(29)

If r(t) is the position vector of a particle in the plane at time t, find the indicated vector. -Find the velocity vector. r(t)=(8t23)i+(19t3)j\mathbf { r } ( \mathrm { t } ) = \left( - 8 \mathrm { t } ^ { 2 } - 3 \right) \mathbf { i } + \left( \frac { 1 } { 9 } \mathrm { t } ^ { 3 } \right) \mathbf { j }

(Multiple Choice)
4.9/5
(29)

If r(t) is the position vector of a particle in the plane at time t, find the indicated vector. -Find the velocity vector. r(t) = (cot t)i + (csc t)j

(Multiple Choice)
4.8/5
(32)

Solve the initial value problem. -Differential Equation: drdt=(t4+5t2)i+4tj\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = \left( \mathrm { t } ^ { 4 } + 5 \mathrm { t } ^ { 2 } \right) \mathbf { i } + 4 \mathrm { t } \mathbf { j } Initial Condition: r(0)=5i6j\mathbf { r } ( 0 ) = 5 \mathbf { i } - 6 \mathbf { j }

(Multiple Choice)
4.8/5
(42)

Find the unit tangent vector of the given curve. - r(t)=3t5i12t5j+4t5kr ( t ) = 3 t ^ { 5 } i - 12 t ^ { 5 } j + 4 t ^ { 5 } \mathbf { k }

(Multiple Choice)
4.8/5
(31)

The position vector of a particle is r(t). Find the requested vector. -  The acceleration at t=1 for r(t)=(3t3t4)i+(3t)j+(4t24t)k\text { The acceleration at } t = 1 \text { for } r ( t ) = \left( 3 t - 3 t ^ { 4 } \right) \mathbf { i } + ( 3 - t ) \mathbf { j } + \left( 4 t ^ { 2 } - 4 t \right) k

(Multiple Choice)
4.9/5
(37)

Find T, N, and B for the given space curve. - r(t)=(t29)i+(2t9)j+4k\mathbf { r } ( \mathrm { t } ) = \left( \mathrm { t } ^ { 2 } - 9 \right) \mathbf { i } + ( 2 \mathrm { t } - 9 ) \mathbf { j } + 4 \mathbf { k }

(Multiple Choice)
4.8/5
(28)

 Find the velocity vector in terms of ur and uθ\text { Find the velocity vector in terms of } u _ { r } \text { and } u _ { \theta } \text {. } - r=2cos2tr = 2 \cos 2 t and θ=4t\theta = 4 t

(Multiple Choice)
4.8/5
(32)

Solve the problem. Unless stated otherwise, assume that the projectile flight is ideal, that the launch angle is measured from the horizontal, and that the projectile is launched from the origin over a horizontal surface -A baseball is hit when it is 2.8ft2.8 \mathrm { ft } above the ground. It leaves the bat with an initial velocity of 149ft/sec149 \mathrm { ft } / \mathrm { sec } at a launch angle of 2424 ^ { \circ } . At the instant the ball is hit, an instantaneous gust of wind blows against the ball, adding a component of 9.7i(ft/sec)- 9.7 \mathrm { i } ( \mathrm { ft } / \mathrm { sec } ) to the ball's initial velocity. Find a vector equation for the path of the baseball.

(Multiple Choice)
4.9/5
(35)

Find the unit tangent vector of the given curve. -r(t) = (7t cos t - 7 sin t)j + (7t sin t + 7 cos t)k

(Multiple Choice)
4.7/5
(41)

Provide an appropriate response. -A golf ball leaves the ground at a 2525 ^ { \circ } angle at a speed of 88ft/sec88 \mathrm { ft } / \mathrm { sec } . Will it clear the top of a 31ft31 \mathrm { ft } tree that is in the way, 135ft135 \mathrm { ft } down the fairway? Explain.

(Essay)
4.8/5
(28)

 Find the arc length parameter along the curve from the point where t=0 by evaluating s=0tv(τ)dτ\text { Find the arc length parameter along the curve from the point where } t = 0 \text { by evaluating } s = \int _ { 0 } ^ { t } | v ( \tau ) | d \tau \text {. } - r(t)=(etcost)i+(etsint)j+5etk\mathbf { r } ( \mathrm { t } ) = \left( e ^ { t } \cos t \right) \mathbf { i } + \left( e ^ { t } \sin t \right) \mathbf { j } + 5 e ^ { t } \mathbf { k }

(Multiple Choice)
4.8/5
(46)

 For the curve r(t), write the acceleration in the form aTT + anN. \text { For the curve } r ( t ) \text {, write the acceleration in the form aTT } + \text { anN. } - r(t)=(t+1)i+(ln(sect)9)j+9k,π/2<t<π/2\mathbf { r } ( \mathrm { t } ) = ( \mathrm { t } + 1 ) \mathbf { i } + ( \ln ( \sec t ) - 9 ) \mathbf { j } + 9 \mathbf { k } , - \pi / 2 < \mathrm { t } < \pi / 2

(Multiple Choice)
4.9/5
(38)

Find T, N, and B for the given space curve. -r(t) = (cosh t)i + (sinh t)j + tk

(Multiple Choice)
5.0/5
(33)

The position vector of a particle is r(t). Find the requested vector. -The velocity at t=π4t = \frac { \pi } { 4 } for r(t)=4sec2(t)i5tan(t)j+10t2k\mathbf { r } ( \mathrm { t } ) = 4 \sec ^ { 2 } ( \mathrm { t } ) \mathbf { i } - 5 \tan ( \mathrm { t } ) \mathbf { j } + 10 \mathrm { t } ^ { 2 } \mathbf { k }

(Multiple Choice)
4.7/5
(33)
Showing 61 - 80 of 142
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)