Exam 14: Vector-Valued Functions and Motion in Space

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the curvature of the curve r(t). - r(t)=(2t+6)i4j+(81t2)kr ( t ) = ( 2 t + 6 ) i - 4 j + \left( 8 - 1 t ^ { 2 } \right) \mathbf { k }

(Multiple Choice)
4.9/5
(36)

Solve the problem. -The orbit of a satellite had a semimajor axis of a =8872 km= 8872 \mathrm {~km} . Calculate the period of the satellite. (Earth's mass =5.975×1024 kg= 5.975 \times 10 ^ { 24 } \mathrm {~kg} and G=6.6720×1011Nm2 kg2\mathrm { G } = 6.6720 \times 10 ^ { - 11 } \mathrm { Nm } ^ { 2 } \mathrm {~kg} - 2 ).

(Multiple Choice)
4.8/5
(39)

Find the curvature of the space curve. -r(t) = ti + (sinh t)j + (cosh t)k

(Multiple Choice)
4.8/5
(33)

Find the curvature of the space curve. -r(t) = -3i + (t + 4)j +(ln(cos t) + 9)k

(Multiple Choice)
4.8/5
(35)

Provide an appropriate response. -The position of a particle is given by r(t) = sin 8t i + cos 3t j. Find the velocity vector for the particle.

(Multiple Choice)
4.8/5
(41)

Evaluate the integral. - 04[i2t(7+t2)2j+152tk]dt\int _ { 0 } ^ { 4 } \left[ - \mathbf { i } - \frac { 2 t } { \left( 7 + t ^ { 2 } \right) ^ { 2 } } j + \frac { 15 } { 2 } \sqrt { t k } \right] d t

(Multiple Choice)
4.8/5
(30)

The position vector of a particle is r(t). Find the requested vector. -  The velocity at t=3 for r(t)=(7t2+4t+3)i3t3j+(8t2)k\text { The velocity at } t = 3 \text { for } \mathbf { r } ( t ) = \left( 7 t ^ { 2 } + 4 t + 3 \right) \mathbf { i } - 3 t ^ { 3 } \mathbf { j } + \left( 8 - t ^ { 2 } \right) \mathbf { k }

(Multiple Choice)
4.9/5
(28)

Find the unit tangent vector of the given curve. -r(t) = (10 - 2t)i + (2t - 3)j + (10 + t)k

(Multiple Choice)
4.9/5
(39)

Solve the problem. Unless stated otherwise, assume that the projectile flight is ideal, that the launch angle is measured from the horizontal, and that the projectile is launched from the origin over a horizontal surface -An ideal projectile is launched from the origin at an angle of α radians to the horizontal and an initial speed of 175 ft/sec. Find the position function r(t) for this projectile.

(Multiple Choice)
4.8/5
(27)

Find the length of the indicated portion of the curve. - r(t)=(4cost)i+(4sint)j+5tk,0tπ/2\mathbf { r } ( t ) = ( 4 \cos t ) \mathbf { i } + ( 4 \sin t ) \mathbf { j } + 5 t \mathbf { k } , 0 \leq t \leq \pi / 2

(Multiple Choice)
4.8/5
(39)

Find the curvature of the space curve. - r(t)=5i+(4+2t)j+(t2+8)kr ( t ) = - 5 i + ( 4 + 2 t ) j + \left( t ^ { 2 } + 8 \right) \mathbf { k }

(Multiple Choice)
4.9/5
(33)

Solve the problem. -The orbit of a satellite has a period of T=1436.8T = 1436.8 minutes. Calculate the semimajor axis of the satellite. (Earth's mass =5.975×1024 kg= 5.975 \times 10 ^ { 24 } \mathrm {~kg} and G=6.6720×1011Nm2 kg2\mathrm { G } = 6.6720 \times 10 ^ { - 11 } \mathrm { Nm } ^ { 2 } \mathrm {~kg} ^ { - 2 } ).

(Multiple Choice)
4.8/5
(33)

Evaluate the integral. - 01[(27t22)i+20tt2+1jtt2+1k]dt\int _ { 0 } ^ { 1 } \left[ \left( 27 t ^ { 2 } - 2 \right) \mathbf { i } + \frac { 20 t } { t ^ { 2 } + 1 } \mathbf { j } - \frac { t } { \sqrt { t ^ { 2 } + 1 } } \mathbf { k } \right] d t

(Multiple Choice)
4.9/5
(22)

The vector r(t) is the position vector of a particle at time t. Find the angle between the velocity and the acceleration vectors at time t = 0. - r(t)=sin1(7t)i+ln(8t2+1)j+7t2+1k\mathbf { r } ( \mathrm { t } ) = \sin ^ { - 1 } ( 7 \mathrm { t } ) \mathbf { i } + \ln \left( 8 \mathrm { t } ^ { 2 } + 1 \right) \mathbf { j } + \sqrt { 7 \mathrm { t } ^ { 2 } + 1 } \mathbf { k }

(Multiple Choice)
4.8/5
(39)

If r(t) is the position vector of a particle in the plane at time t, find the indicated vector. -Find the acceleration vector. r(t)=(8ln(9t))i+(3t3)j\mathbf { r } ( t ) = ( 8 \ln ( 9 \mathrm { t } ) ) \mathbf { i } + \left( 3 \mathrm { t } ^ { 3 } \right) \mathbf { j }

(Multiple Choice)
5.0/5
(32)

Find T, N, and B for the given space curve. - r(t)=(ln(cost)+1)i+1j+(10+t)k,π/2<t<π/2r ( t ) = ( \ln ( \cos t ) + 1 ) \mathbf { i } + 1 \mathbf { j } + ( 10 + t ) \mathbf { k } , - \pi / 2 < t < \pi / 2

(Multiple Choice)
4.8/5
(30)

 Find the velocity vector in terms of ur and uθ\text { Find the velocity vector in terms of } u _ { r } \text { and } u _ { \theta } \text {. } - r=a(2cosθ)\mathrm { r } = \mathrm { a } ( 2 - \cos \theta ) and dθdt=7\frac { \mathrm { d } \theta } { \mathrm { dt } } = 7

(Multiple Choice)
4.8/5
(32)

The vector r(t) is the position vector of a particle at time t. Find the angle between the velocity and the acceleration vectors at time t = 0. - r(t)=e6ti+(4+e6t)j+(7cos8t)k\mathbf{r}(\mathrm{t})=\mathrm{e}^{6 \mathrm{t}_{\mathrm{i}}+\left(4+\mathrm{e}^{-6 \mathrm{t}}\right) \mathrm{j}+(7 \cos 8 \mathrm{t}) \mathbf{k}}

(Multiple Choice)
4.7/5
(30)

Find the length of the indicated portion of the curve. - r(t)=(1+2t)i+(1+4t)j+(55t)k,1t0r ( t ) = ( 1 + 2 t ) \mathbf { i } + ( 1 + 4 t ) \mathbf { j } + ( 5 - 5 t ) \mathbf { k } , - 1 \leq t \leq 0

(Multiple Choice)
4.7/5
(32)

Find the curvature of the space curve. -r(t) = (t + 4)i + 9j + (ln(sec t) + 3)k

(Multiple Choice)
4.9/5
(41)
Showing 21 - 40 of 142
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)