Exam 3: The Derivative and the Tangent Line Problem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the second derivative of the function. f(x)=(3x3+7)7f ( x ) = \left( 3 x ^ { 3 } + 7 \right) ^ { 7 }

(Multiple Choice)
4.9/5
(32)

A conical tank (with vertex down) is feet across the top and feet deep. If water is flowing into the tank at a rate of cubic feet per minute, find the rate of change of the Depth of the water when the water is feet deep.

(Multiple Choice)
4.8/5
(40)

 Find the derivative of the function y=lnx27\text { Find the derivative of the function } y = \ln \sqrt { x ^ { 2 } - 7 } \text {. }

(Multiple Choice)
4.8/5
(42)

 Find an equation of the tangent line to the graph of y=ln(x3) at the point (1,0)\text { Find an equation of the tangent line to the graph of } y = \ln \left( x ^ { 3 } \right) \text { at the point } ( 1,0 ) \text {. }

(Multiple Choice)
4.8/5
(30)

Suppose the position function for a free-falling object on a certain planet is given by s(t)=12t2+v0t+s0s ( t ) = - 12 t ^ { 2 } + v _ { 0 } t + s _ { 0 } . A silver coin is dropped from the top of a building that is 1372 feet tall. Find the instantaneous velocity of the coin when t=4t = 4 .

(Multiple Choice)
4.8/5
(31)

airplane flies at an altitude of 14 miles toward a point directly over an observer. Consider θ\theta and xx as shown in the following figure. Write θ\theta as a function of xx .  airplane flies at an altitude of 14 miles toward a point directly over an observer. Consider  \theta  and  x  as shown in the following figure. Write  \theta  as a function of  x .

(Multiple Choice)
4.8/5
(33)

The displacement from equilibrium of an object in harmonic motion on the end of a spring is y=14cos8t13sin15ty = \frac { 1 } { 4 } \cos 8 t - \frac { 1 } { 3 } \sin 15 t where yy is measured in feet and tt is the time in seconds. Determine the position of the object when t=π/12t = \pi / 12 . Round your answer to two decimal places.

(Multiple Choice)
4.7/5
(26)

 The volume of a cube with sides of length s is given by V=s3. Find the rate of \text { The volume of a cube with sides of length } s \text { is given by } V = s ^ { 3 } \text {. Find the rate of } change of volume with respect to ss when s=6s = 6 centimeters.

(Multiple Choice)
4.8/5
(28)

Approximate the positive zero(s) of the function f(x)=x3cosx to three decimal f ( x ) = x ^ { 3 } - \cos x \text { to three decimal } places. Use Newton's Method and continue the process until two successive approximations differ by less than 0.001. 0.0010.001

(Multiple Choice)
4.8/5
(28)

 Find dydx by implicit differentiation given that 2xy=9\text { Find } \frac { d y } { d x } \text { by implicit differentiation given that } 2 x y = 9 \text {. }

(Multiple Choice)
4.7/5
(39)

 Find the derivative of the function f(x)=6x2 by the limit process. \text { Find the derivative of the function } f ( x ) = \frac { 6 } { \sqrt [ 2 ] { x } } \text { by the limit process. }

(Multiple Choice)
4.8/5
(26)

 Use the Quotient Rule to differentiate the function ft(x)=4+xx2+9\text { Use the Quotient Rule to differentiate the function } f ^ {t } ( x ) = \frac { 4 + x } { x ^ { 2 } + 9 } \text {. }

(Multiple Choice)
4.9/5
(36)

 Differentiate 7x27xy2+8y3=16 with respect to t(x and y are functions of t ). \text { Differentiate } 7 x ^ { 2 } - 7 x y ^ { 2 } + 8 y ^ { 3 } = 16 \text { with respect to } t ( x \text { and } y \text { are functions of } t \text { ). }

(Multiple Choice)
4.8/5
(38)

Suppose the position function for a free-falling object on a certain planet is given by s(t)=13t3+v0t+s0s ( t ) = - 13 t ^ { 3 } + v _ { 0 } t + s _ { 0 } . A silver coin is dropped from the top of a building that is 1370 feet tall. Determine the velocity function for the coin.

(Multiple Choice)
4.8/5
(33)

Suppose the position function for a free-falling object on a certain planet is given by s(t)=12t2+v0t+s0s ( t ) = - 12 t ^ { 2 } + v _ { 0 } t + s _ { 0 } . A silver coin is dropped from the top of a building that is 1372 feet tall. Find the time required for the coin to reach ground level. Round your answer to the three decimal places.

(Multiple Choice)
4.8/5
(40)

Find the derivative of the function. f(x)=x4f ( x ) = x ^ { 4 }

(Multiple Choice)
4.8/5
(31)

 Approximate the fixed point of the function f(x)=cosx between π2 and π2 to two \text { Approximate the fixed point of the function } f ( x ) = \cos x \text { between } - \frac { \pi } { 2 } \text { and } \frac { \pi } { 2 } \text { to two } decimal places. (A fixed po int x0x _ { 0 } of a function ff is a value of xx such that f(x0)=x0f \left( x _ { 0 } \right) = x _ { 0 } .)

(Multiple Choice)
4.7/5
(21)

A ball is thrown straight down from the top of a 300-ft building with an initial velocity of 12ft- 12 \mathrm { ft } per second. The position function is s(t)=16t2+v0t+s0s ( t ) = - 16 t ^ { 2 } + v _ { 0 } t + s _ { 0 } . What is the velocity of the ball after 4 seconds?

(Multiple Choice)
4.9/5
(40)

 Describe the x-values at which the graph of the function f(x)=x2x29 given below \text { Describe the } x \text {-values at which the graph of the function } f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 9 } \text { given below } \text { Describe the } x \text {-values at which the graph of the function } f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 9 } \text { given below }     is differentiable. is differentiable.

(Multiple Choice)
4.9/5
(38)

 Find d2ydx2 in terms of x and y\text { Find } \frac { d ^ { 2 } y } { d x ^ { 2 } } \text { in terms of } x \text { and } y \text {. } x2+y2=6x ^ { 2 } + y ^ { 2 } = 6

(Multiple Choice)
4.9/5
(26)
Showing 21 - 40 of 191
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)