Exam 3: The Derivative and the Tangent Line Problem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Find ftt(x) if f(x)=(7+4x)e4x\text { Find } f ^ { tt} ( x ) \text { if } f ( x ) = ( 7 + 4 x ) e ^ { - 4 x }

(Multiple Choice)
4.9/5
(34)

airplane flies at an altitude of 6 miles towards a point directly over an observer. Consider θ\theta and xx as shown in the following figure. The speed of the plane is 400 miles per hour. Find dθdt\frac { d \theta } { d t } when x=10x = 10 . Round your answer to three decimal places.  airplane flies at an altitude of 6 miles towards a point directly over an observer. Consider  \theta  and  x  as shown in the following figure. The speed of the plane is 400 miles per hour. Find  \frac { d \theta } { d t }  when  x = 10 . Round your answer to three decimal places.

(Multiple Choice)
4.8/5
(38)

 Find the derivative of the function f(x)=7x3 using the limiting process. \text { Find the derivative of the function } f ( x ) = \sqrt { 7 x - 3 } \text { using the limiting process. }

(Multiple Choice)
4.7/5
(29)

 Differentiate the function f(x)=ln(e5x+1e2x+1)\text { Differentiate the function } f ( x ) = \ln \left( \frac { e ^ { 5 x } + 1 } { e ^ { 2 x } + 1 } \right) \text {. }

(Multiple Choice)
4.9/5
(32)

 Use logarithmic differentiation to find dydx\text { Use logarithmic differentiation to find } \frac { d y } { d x } \text {. } y=5x3(3x+2)3y = \frac { 5 x - 3 } { ( 3 x + 2 ) ^ { 3 } }

(Multiple Choice)
4.9/5
(39)

Suppose that the total number of arrests T (in thousands) for all males ages 14 to 27 in 2006 is approximated by the model T=0.602x241.44x2+922.8x6330,14x27T = 0.602 x ^ { 2 } - 41.44 x ^ { 2 } + 922.8 x - 6330,14 \leq x \leq 27 where xx is the age in years (see figure). Approximate the two ages to one decimal place that had total arrests of 275 thousand.  Suppose that the total number of arrests T (in thousands) for all males ages 14 to 27 in 2006 is approximated by the model  T = 0.602 x ^ { 2 } - 41.44 x ^ { 2 } + 922.8 x - 6330,14 \leq x \leq 27  where  x  is the age in years (see figure). Approximate the two ages to one decimal place that had total arrests of 275 thousand.

(Multiple Choice)
4.9/5
(42)

 Find the derivative of the function f(x)=x59x4\text { Find the derivative of the function } f ( x ) = \frac { x ^ { 5 } - 9 } { x ^ { 4 } } \text {. }

(Multiple Choice)
4.9/5
(30)

 Use the Quotient Rule to differentiate the function f(x)=sinxx2+3\text { Use the Quotient Rule to differentiate the function } f ( x ) = \frac { \sin x } { x ^ { 2 } + 3 } \text {. }

(Multiple Choice)
4.9/5
(31)

 Use implicit differentiation to find dydx\text { Use implicit differentiation to find } \frac { d y } { d x } \text {. } 7x2+8lnxy=147 x ^ { 2 } + 8 \ln x y = 14

(Multiple Choice)
4.9/5
(35)

Find the slope m of the line tangent to the graph of the function f(x)=27x at the m \text { of the line tangent to the graph of the function } f ( x ) = 2 - 7 x \text { at the } point (1,9)( - 1,9 )

(Multiple Choice)
4.8/5
(30)

 Find the derivative of the function f(x)=10arcsin(x9)\text { Find the derivative of the function } f ( x ) = 10 \arcsin ( x - 9 ) \text {. }

(Multiple Choice)
4.9/5
(44)

Find the slope of the graph of the function at the given value. f(x)=2x2+5x7x2f ( x ) = 2 x ^ { 2 } + 5 x - \frac { 7 } { x ^ { 2 } } when x=4x = - 4

(Multiple Choice)
4.9/5
(33)

The displacement from equilibrium of an object in harmonic motion on the end of a spring is y=16cos12t12sin8ty = \frac { 1 } { 6 } \cos 12 t - \frac { 1 } { 2 } \sin 8 t where yy is measured in feet and tt is the time in seconds. Determine the velocity of the object when t=π/8t = \pi / 8 . Round your answer to two decimal places.

(Multiple Choice)
4.7/5
(36)

A population of 620 bacteria is introduced into a culture and grows in number according to the equation P(t)=620(1+4t34+t2)P ( t ) = 620 \left( 1 + \frac { 4 t } { 34 + t ^ { 2 } } \right) where tt is measured in hours. Find the rate at which the population is growing when t=2t = 2 . Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(35)

 Find dydx by implicit differentiation. \text { Find } \frac { d y } { d x } \text { by implicit differentiation. } x2+y2=25x ^ { 2 } + y ^ { 2 } = 25

(Multiple Choice)
4.9/5
(36)

Newton's Method to approximate the zero(s) of the function f(x)=x5+4x+1f ( x ) = x ^ { 5 } + 4 x + 1 accurate to three decimal places.

(Multiple Choice)
4.9/5
(29)

 Find the second derivative of the function f(x)=8x59\text { Find the second derivative of the function } f ( x ) = 8 x ^ { \frac { 5 } { 9 } } \text {. }

(Multiple Choice)
4.8/5
(42)

 Find the second derivative of the function f(x)=x4secx\text { Find the second derivative of the function } f ( x ) = x ^ { 4 } \sec x \text {. }

(Multiple Choice)
4.7/5
(47)

 Find the derivative of the function sinx2x+cosx. Simplify your answer. \text { Find the derivative of the function } \frac { \sin x } { 2 x + \cos x } \text {. Simplify your answer. }

(Multiple Choice)
4.8/5
(38)

 Find dydx by implicit differentiation. \text { Find } \frac { d y } { d x } \text { by implicit differentiation. } x2+5x+9xyy2=4x ^ { 2 } + 5 x + 9 x y - y ^ { 2 } = 4

(Multiple Choice)
4.8/5
(38)
Showing 81 - 100 of 191
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)