Exam 3: The Derivative and the Tangent Line Problem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the alternative form of the derivative to find the derivative of the function f(x)=3x2 at x=2f ( x ) = \frac { 3 } { x ^ { 2 } } \text { at } x = 2

(Multiple Choice)
4.9/5
(24)

 Differentiate 3sinxcosy=1 with respect to t(x and y are functions of t)\text { Differentiate } 3 \sin x \cos y = 1 \text { with respect to } t ( x \text { and } y \text { are functions of } t ) \text {. }

(Multiple Choice)
4.8/5
(35)

Suppose a 15-centimeter pendulum moves according to the equation θ=0.6cos8t\theta = 0.6 \cos 8 t where θ\theta is the angular displacement from the vertical in radians and tt is the time in seconds. Determine the rate of change of θ\theta when t=7t = 7 seconds. Round your answer to four decimal places.

(Multiple Choice)
4.9/5
(40)

Find the slope of the graph of the function at the given value. f(x)=4(5x+6)2f ( x ) = 4 ( 5 x + 6 ) ^ { 2 } at x=3x = 3

(Multiple Choice)
4.8/5
(43)

 Find the slope m of the line tangent to the graph of the function g(x)=9x2 at the \text { Find the slope } m \text { of the line tangent to the graph of the function } g ( x ) = 9 - x ^ { 2 } \text { at the } point (4,7)( 4 , - 7 )

(Multiple Choice)
4.7/5
(36)

 Evaluate dydx for the equation 7xy=21 at the given point (3,1). Round your \text { Evaluate } \frac { d y } { d x } \text { for the equation } 7 x y = 21 \text { at the given point } ( - 3 , - 1 ) \text {. Round your } answer to two decimal places.

(Multiple Choice)
4.8/5
(31)

 If the annual rate of inflation averages 8% over the next 10 years, the approximate \text { If the annual rate of inflation averages } 8 \% \text { over the next } 10 \text { years, the approximate } cost CC of goods or services during any year in that decade is C(t)=P(1.08)tC ( t ) = P ( 1.08 ) ^ { t } where tt is the time in years and PP is the present cost. The price of an oil change for your car is presently $24.35\$ 24.35 . Estimate the price 3 years from now. Round your answer to two decimal places.

(Multiple Choice)
4.9/5
(35)

 Find d2ydx2 in terms of x and y52xy=7x3y\text { Find } \frac { d ^ { 2 } y } { d x ^ { 2 } } \text { in terms of } x \text { and } y \text {. } 5 - 2 x y = 7 x - 3 y

(Multiple Choice)
5.0/5
(31)

 Find the derivative of the function f(t)=15t3+6sec(t)\text { Find the derivative of the function } f ( t ) = 15 t ^ { 3 } + 6 \sec ( t ) \text {. }

(Multiple Choice)
5.0/5
(24)

 Find the derivative of the function y=8sin5x\text { Find the derivative of the function } y = 8 \sin 5 x \text {. }

(Multiple Choice)
4.8/5
(33)

Suppose the position function for a free-falling object on a certain planet is given by s(t)=16t2+v0t+s0s ( t ) = - 16 t ^ { 2 } + v _ { 0 } t + s _ { 0 } . A silver coin is dropped from the top of a building that is 1372 feet tall. Determine the average velocity of the coin over the time interval [3,4][ 3,4 ] .

(Multiple Choice)
4.8/5
(38)

 Find the derivative of the following function f(x)=3x2+6x8 using the limiting \text { Find the derivative of the following function } f ( x ) = - 3 x ^ { 2 } + 6 x - 8 \text { using the limiting } process.

(Multiple Choice)
4.8/5
(42)

 Find dydx if y=x5ex9\text { Find } \frac { d y } { d x } \text { if } y = x ^ { 5 } e ^ { x ^ { 9 } }

(Multiple Choice)
4.7/5
(25)

Find the derivative of the following function using the limiting process. f(x)=4x2+5xf ( x ) = - 4 x ^ { 2 } + 5 x

(Multiple Choice)
4.9/5
(47)

 Find the derivative of the function f(x)=5x32sin(x)\text { Find the derivative of the function } f ( x ) = - 5 x ^ { 3 } - 2 \sin ( x ) \text {. }

(Multiple Choice)
4.8/5
(40)

Find the derivative of the following function using the limiting process. f(x)=1x4f ( x ) = \frac { 1 } { x ^ { 4 } }

(Multiple Choice)
4.7/5
(36)

 Find an equation of the line that is tangent to the graph of the function f(x)=8x2\text { Find an equation of the line that is tangent to the graph of the function } f ( x ) = 8 x ^ { 2 } and parallel to the line 16x+y+6=016 x + y + 6 = 0 .

(Multiple Choice)
4.8/5
(35)

A ladder feet long is leaning against the wall of a house (see figure). The base of the ladder is pulled away from the wall at a rate of feet per second. How fast is the top of the ladder Moving down the wall when its base is feet from the wall? Round your answer to two decimal Places. A ladder feet long is leaning against the wall of a house (see figure). The base of the ladder is pulled away from the wall at a rate of feet per second. How fast is the top of the ladder Moving down the wall when its base is feet from the wall? Round your answer to two decimal Places.

(Multiple Choice)
4.8/5
(41)

 Use implicit differentiation to find dydx at the point (7,1)\text { Use implicit differentiation to find } \frac { d y } { d x } \text { at the point } ( 7,1 ) \text {. } 4xy+5lny=284 x y + 5 \ln y = 28

(Multiple Choice)
4.8/5
(47)

 The radius, r, of a circle is decreasing at a rate of 5 centimeters per minute. \text { The radius, } r \text {, of a circle is decreasing at a rate of } 5 \text { centimeters per minute. }  Find the rate of change of area, A, when the radius is 6.\text { Find the rate of change of area, } A \text {, when the radius is } 6 .

(Multiple Choice)
4.9/5
(28)
Showing 161 - 180 of 191
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)