Exam 3: The Derivative and the Tangent Line Problem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Find dydx by implicit differentiation. \text { Find } \frac { d y } { d x } \text { by implicit differentiation. } x67+y85=9x ^ { \frac { 6 } { 7 } } + y ^ { \frac { 8 } { 5 } } = 9

(Multiple Choice)
4.8/5
(33)

Find the derivative of the function. f(t)=(1+8t)59f ( t ) = ( 1 + 8 t ) ^ { \frac { 5 } { 9 } }

(Multiple Choice)
5.0/5
(36)

Find the points at which the graph of the equation has a vertical or horizontal tangent line. 5x2+4y210x+24y+8=05 x ^ { 2 } + 4 y ^ { 2 } - 10 x + 24 y + 8 = 0

(Multiple Choice)
4.8/5
(39)

The radius r of a sphere is increasing at a rate of inches per minute. Find the rate of change of the volume when r=11 inches. r = 11 \text { inches. }

(Multiple Choice)
4.9/5
(35)

 Find the derivative of the function y=ln(xx2+7)\text { Find the derivative of the function } y = \ln \left( x \sqrt { x ^ { 2 } + 7 } \right) \text {. }

(Multiple Choice)
4.9/5
(28)

 Evaluate the derivative of the function f(t)=8t2+25t1 at the point (4,13019)\text { Evaluate the derivative of the function } f ( t ) = \frac { 8 t ^ { 2 } + 2 } { 5 t - 1 } \text { at the point } \left( 4 , \frac { 130 } { 19 } \right) \text {. }

(Multiple Choice)
4.8/5
(32)

Use implicit differentiation to find an equation of the tangent line to the ellipse x22+y298=1 at (1,7)\frac { x ^ { 2 } } { 2 } + \frac { y ^ { 2 } } { 98 } = 1 \text { at } ( 1,7 )

(Multiple Choice)
5.0/5
(38)

 Find the derivative of the function y=8cos4x\text { Find the derivative of the function } y = 8 \cos 4 x \text {. }

(Multiple Choice)
4.9/5
(33)

 Use the rules of differentiation to find the derivative of the function g(x)=x6+5x3\text { Use the rules of differentiation to find the derivative of the function } g ( x ) = x ^ { 6 } + 5 x ^ { 3 } \text {. }

(Multiple Choice)
4.9/5
(40)

 Find an equation of the tangent line to the graph of the function f(x)=x2 at \text { Find an equation of the tangent line to the graph of the function } f ( x ) = \sqrt { x - 2 } \text { at } the point (18,4)( 18,4 ) .

(Multiple Choice)
4.8/5
(38)

 Find the second derivative of the function f(x)=3x2+5x4x\text { Find the second derivative of the function } f ( x ) = \frac { 3 x ^ { 2 } + 5 x - 4 } { x } \text {. }

(Multiple Choice)
4.8/5
(32)

 Find the second derivative of the function f(x)=sin5x6\text { Find the second derivative of the function } f ( x ) = \sin 5 x ^ { 6 } \text {. }

(Multiple Choice)
4.9/5
(40)

Find the derivative of the function. f(t)=(4+7t5)8f ( t ) = \left( 4 + 7 t ^ { 5 } \right) ^ { 8 }

(Multiple Choice)
4.9/5
(32)

 Determine all values of x, (if any), at which the graph of the function has a \text { Determine all values of } x \text {, (if any), at which the graph of the function has a } horizontal tangent. y(x)=9x6y ( x ) = \frac { 9 } { x - 6 }

(Multiple Choice)
4.8/5
(34)

 Find an equation of the tangent line to the graph of y=e3x at the point (0,1)\text { Find an equation of the tangent line to the graph of } y = e ^ { 3 x } \text { at the point } ( 0,1 ) \text {. }

(Multiple Choice)
4.9/5
(35)

In a free-fall experiment, an object is dropped from a height of 144 feet. A camera on the ground 500 feet from the point of impact records the fall of the object as shown in the figure. Assuming the object is released at time t=0t = 0 . Find the rate of change of the angle of elevation of the camera when t=1t = 1 . Round your answer to four decimal places.  In a free-fall experiment, an object is dropped from a height of 144 feet. A camera on the ground 500 feet from the point of impact records the fall of the object as shown in the figure. Assuming the object is released at time  t = 0 . Find the rate of change of the angle of elevation of the camera when  t = 1 . Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(42)

Apply Newton's Method to approximate the x-value of the indicated point of intersection of f(x)=x and g(x)=tanx Continue the process until two successive approximations f ( x ) = x \text { and } g ( x ) = \tan x \text { Continue the process until two successive approximations } differ by less than 0.001. (Hint: Let h(x)=f(x)g(x)h ( x ) = f ( x ) - g ( x ) .) Round your answer to three decimal places.  Apply Newton's Method to approximate the x-value of the indicated point of intersection of  f ( x ) = x \text { and } g ( x ) = \tan x \text { Continue the process until two successive approximations }  differ by less than 0.001. (Hint: Let  h ( x ) = f ( x ) - g ( x ) .) Round your answer to three decimal places.

(Multiple Choice)
4.7/5
(33)

When satellites observe Earth, they can scan only part of Earth's surface. Some satellites have sensors that can measure the angle θ\theta shown in the figure. Let hh represent the satellite's distance from Earth's surface and let rr represent Earth's radius. Find the rate at which hh is changing with respect to θ\theta when θ=60\theta = 60 ^ { \circ } (Assume r=4460r = 4460 miles.) Round your answer to the nearest unit.  When satellites observe Earth, they can scan only part of Earth's surface. Some satellites have sensors that can measure the angle  \theta  shown in the figure. Let  h  represent the satellite's distance from Earth's surface and let  r  represent Earth's radius. Find the rate at which  h  is changing with respect to  \theta  when  \theta = 60 ^ { \circ }  (Assume  r = 4460  miles.) Round your answer to the nearest unit.

(Multiple Choice)
4.8/5
(35)

 The length of a rectangle is 5t+5 and its height is t4, where t is time in seconds and \text { The length of a rectangle is } 5 t + 5 \text { and its height is } t ^ { 4 } \text {, where } t \text { is time in seconds and } the dimensions are in inches. Find the rate of change of area, A, with respect to time.

(Multiple Choice)
4.9/5
(36)

 A point is moving along the graph of the function y=19x2+4 such that dxdt=2\text { A point is moving along the graph of the function } y = \frac { 1 } { 9 x ^ { 2 } + 4 } \text { such that } \frac { d x } { d t } = 2 centimeters per second. Find dydt\frac { d y } { d t } when x=2x = 2 .

(Multiple Choice)
4.7/5
(38)
Showing 61 - 80 of 191
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)