Exam 3: The Derivative and the Tangent Line Problem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

A petrol car is parked 40 feet from a long warehouse (see figure). The revolving light on top  of the car turns at a rate of 30 revolutions per minute. Write θ as a function of x\text { of the car turns at a rate of } 30 \text { revolutions per minute. Write } \theta \text { as a function of } x \text {. }  A petrol car is parked 40 feet from a long warehouse (see figure). The revolving light on top  \text { of the car turns at a rate of } 30 \text { revolutions per minute. Write } \theta \text { as a function of } x \text {. }

(Multiple Choice)
5.0/5
(27)

Find an equation to the tangent line for the graph of f at the given point. f(x)=(5x5+5)2,(1,100)f ( x ) = \left( 5 x ^ { 5 } + 5 \right) ^ { 2 } , \quad ( 1,100 )

(Multiple Choice)
5.0/5
(39)

Find the derivative of the function. g(x)=(x+6x2+7)4g ( x ) = \left( \frac { x + 6 } { x ^ { 2 } + 7 } \right) ^ { 4 }

(Multiple Choice)
4.9/5
(37)

 Find the derivative of the algebraic function f(x)=(x6+4)5\text { Find the derivative of the algebraic function } f ( x ) = \left( x ^ { 6 } + 4 \right) ^ { 5 } \text {. }

(Multiple Choice)
4.9/5
(34)

 Find ft(x) if f(x)=log3(x25x2)\text { Find } f ^ { t } ( x ) \text { if } f ( x ) = \log _ { 3 } \left( \frac { x ^ { 2 } - 5 } { x - 2 } \right)

(Multiple Choice)
4.7/5
(39)

dydx at the point (0,20) for the equation x=14ln(y2399)\frac { d y } { d x } \text { at the point } ( 0,20 ) \text { for the equation } x = 14 \ln \left( y ^ { 2 } - 399 \right) \text {. }

(Multiple Choice)
4.8/5
(35)

Find the derivative of the function. f(s)=9ssins+5coss.f ( s ) = 9 s \sin s + 5 \cos s .

(Multiple Choice)
4.8/5
(38)

Find an equation of the tangent line to the graph of f at the given point. f(t)=(t5)(t23), at (2,3)f ( t ) = ( t - 5 ) \left( t ^ { 2 } - 3 \right) , \text { at } ( 2 , - 3 )

(Multiple Choice)
4.8/5
(31)

 A buoy oscillates in simple harmonic motion y=Acos at as waves move past \text { A buoy oscillates in simple harmonic motion } y = A \cos \text { at as waves move past } it. The buoy moves a total of 13.513.5 feet (vertically) between its low point and its high point. It returns to its high point every 10 seconds. Determine the velocity of the buoy as a function of tt .

(Multiple Choice)
4.8/5
(45)

Find the slope-intercept form of the equation of the line tangent to the graph of y=arctan(7x)y = \arctan ( 7 x ) when x=37x = \frac { \sqrt { 3 } } { 7 }

(Multiple Choice)
4.9/5
(36)

 Find d2yd2x in terms of x and y given that x2+6y2=9. Use the original equation to \text { Find } \frac { d ^ { 2 } y } { d ^ { 2 } x } \text { in terms of } x \text { and } y \text { given that } x ^ { 2 } + 6 y ^ { 2 } = 9 \text {. Use the original equation to } simplify your answer.

(Multiple Choice)
4.8/5
(35)

Determine all values of x, (if any), at which the graph of the function has a horizontal tangent. y(x)=6x(x9)2y ( x ) = \frac { 6 x } { ( x - 9 ) ^ { 2 } }

(Multiple Choice)
4.9/5
(38)

Find the slope of the graph of the function at the given value. f(x)=5x3f ( x ) = \frac { - 5 } { x ^ { 3 } } when x=9x = 9

(Multiple Choice)
4.7/5
(38)

Complete two iterations of Newton's Method for the function f(x)=x27 using the f ( x ) = x ^ { 2 } - 7 \text { using the } initial guess  2.6. Round your answers to four decimal places. \text { 2.6. Round your answers to four decimal places. }

(Multiple Choice)
4.8/5
(25)

 The graph of the function f is given below. Select the graph of ft\text { The graph of the function } f \text { is given below. Select the graph of } f ^ { t } \text {. } \text { The graph of the function } f \text { is given below. Select the graph of } f ^ { t } \text {. }

(Multiple Choice)
5.0/5
(39)

 Use logarithmic differentiation to find the derivative of y=x3629x4(x1)14\text { Use logarithmic differentiation to find the derivative of } y = \frac { x ^ { 36 } \sqrt { 29 x - 4 } } { ( x - 1 ) ^ { 14 } } \text {. }

(Multiple Choice)
4.8/5
(33)

airplane is flying in still air with an airspeed of miles per hour. If it is climbing at an angle of , find the rate at which it is gaining altitude. Round your answer to four Decimal places.

(Multiple Choice)
4.9/5
(28)

 Find the derivative of the algebraic function f(x)=x(34x+6)\text { Find the derivative of the algebraic function } f ( x ) = x \left( 3 - \frac { 4 } { x + 6 } \right) \text {. }

(Multiple Choice)
4.8/5
(31)

 Find the derivative of the function g(x)=2 by the limit process. \text { Find the derivative of the function } g ( x ) = - 2 \text { by the limit process. }

(Multiple Choice)
4.7/5
(24)

 Use the rules of differentiation to find the derivative of the function y=7+6sinx\text { Use the rules of differentiation to find the derivative of the function } y = 7 + 6 \sin x \text {. }

(Multiple Choice)
4.8/5
(38)
Showing 121 - 140 of 191
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)