Exam 3: The Derivative and the Tangent Line Problem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Find the derivative of the function f(x)=4x24cos(x)\text { Find the derivative of the function } f ( x ) = - 4 x ^ { 2 } - 4 \cos ( x ) \text {. }

(Multiple Choice)
4.8/5
(30)

 Find dydx by implicit differentiation. \text { Find } \frac { d y } { d x } \text { by implicit differentiation. } x4+7x+6xyy7=9x ^ { 4 } + 7 x + 6 x y - y ^ { 7 } = 9

(Multiple Choice)
4.7/5
(34)

 Differentiate the function f(x)=ln(8x24x+11)\text { Differentiate the function } f ( x ) = \ln \left( 8 x ^ { 2 } - 4 x + 11 \right) \text {. }

(Multiple Choice)
4.9/5
(27)

 Evaluate dydx for the equation x45+y45=257 at the given point (1024,1). Round \text { Evaluate } \frac { d y } { d x } \text { for the equation } x ^ { \frac { 4 } { 5 } } + y ^ { \frac { 4 } { 5 } } = 257 \text { at the given point } ( 1024,1 ) \text {. Round } your answer to two decimal places.

(Multiple Choice)
4.9/5
(38)

 Find ft(t) if f(t)=t10107t\text { Find } f ^ { t } ( t ) \text { if } f ( t ) = t ^ { 10 } 10 ^ { 7 t }

(Multiple Choice)
4.8/5
(42)

 Find the derivative of the function f(x)=2x3+3cosx\text { Find the derivative of the function } f ( x ) = \frac { 2 } { \sqrt [ 3 ] { x } } + 3 \cos x \text {. }

(Multiple Choice)
4.8/5
(38)

 Find the derivative of the function f(x)=6e8xe4x\text { Find the derivative of the function } f ( x ) = 6 e ^ { 8 x } - e ^ { - 4 x } \text {. }

(Multiple Choice)
4.8/5
(30)

 Find the derivative of the function f(x)=9xsin(x)\text { Find the derivative of the function } f ( x ) = 9 \sqrt { x } \sin ( x ) \text {. }

(Multiple Choice)
4.8/5
(30)

All edges of a cube are expanding at a rate of centimeters per second. How fast is the volume changing when each edge is centimeters?

(Multiple Choice)
4.9/5
(35)

 Find the derivative of the algebraic function H(t)=(t65)(t5+6)\text { Find the derivative of the algebraic function } H ( t ) = \left( t ^ { 6 } - 5 \right) \left( t ^ { 5 } + 6 \right)

(Multiple Choice)
4.9/5
(31)

 Use the Quotient Rule to differentiate the function f(x)=8xx5+3\text { Use the Quotient Rule to differentiate the function } f ( x ) = \frac { 8 x } { x ^ { 5 } + 3 } \text {. }

(Multiple Choice)
4.9/5
(31)

 Find the derivative of the function f(x)=9arcsin(6x2+19x9)\text { Find the derivative of the function } f ( x ) = 9 \arcsin \left( 6 x ^ { 2 } + 19 x - 9 \right)

(Multiple Choice)
4.9/5
(40)

Newton´s Method to approximate the x-value of the indicated point of intersection of the two graphs accurate to three decimal places.Continue the process until two Successive approximations differ by less tha 0.001. [Hint: Let h(x)=f(x)g(x).]0.001 \text {. [Hint: Let } h ( x ) = f ( x ) - g ( x ) . ] f(x)=3x+1f ( x ) = 3 x + 1 g(x)=x+5g ( x ) = \sqrt { x + 5 }  Newton´s Method to approximate the x-value of the indicated point of intersection of the two graphs accurate to three decimal places.Continue the process until two Successive approximations differ by less tha  0.001 \text {. [Hint: Let } h ( x ) = f ( x ) - g ( x ) . ]   f ( x ) = 3 x + 1   g ( x ) = \sqrt { x + 5 }

(Multiple Choice)
4.9/5
(34)

a free-fall experiment, an object is dropped from a height of 256 feet. A camera on the ground 500 feet from the point of impact records the fall of the object as shown in the figure. Assuming the object is released at time t=0t = 0 . At what time will the object reach the ground level?  a free-fall experiment, an object is dropped from a height of 256 feet. A camera on the ground 500 feet from the point of impact records the fall of the object as shown in the figure. Assuming the object is released at time  t = 0 . At what time will the object reach the ground level?

(Multiple Choice)
4.9/5
(43)

Assume that x and y are both differentiable functions of t. Find dxdt\frac { d x } { d t } when x=11x = 11 and dydt=8\frac { d y } { d t } = - 8 for the equation xy=132x y = 132 .

(Multiple Choice)
4.9/5
(25)

Find the derivative of the function. y=35sec2xy = \frac { 3 } { 5 } \sec ^ { 2 } x

(Multiple Choice)
4.8/5
(34)

 Use the Product Rule to differentiate f(u)=u(5u6)\text { Use the Product Rule to differentiate } f ( u ) = \sqrt { u } \left( 5 - u ^ { 6 } \right) \text {. }

(Multiple Choice)
4.9/5
(33)

Find the derivative of the function. f(x)=x7(5+8x)3f ( x ) = x ^ { 7 } ( 5 + 8 x ) ^ { 3 }

(Multiple Choice)
5.0/5
(36)

 Find the slope of the tangent line (16x)y2=x3 at the given point (8,8). Round \text { Find the slope of the tangent line } ( 16 - x ) y ^ { 2 } = x ^ { 3 } \text { at the given point } ( 8,8 ) \text {. Round } your answer to two decimal places.

(Multiple Choice)
4.8/5
(33)

 Find the derivative of the function f(x)=4excos(x). Simplify your answer. \text { Find the derivative of the function } f ( x ) = 4 e ^ { x } \cos ( x ) \text {. Simplify your answer. }

(Multiple Choice)
4.9/5
(27)
Showing 101 - 120 of 191
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)