Exam 3: Differentiation Rules

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find an equation of the tangent line to the graph of y=lnxxy = \frac { \ln x } { x } at the point (e2,2e2)\left( e ^ { 2 } , \frac { 2 } { e ^ { 2 } } \right) .

(Essay)
4.9/5
(39)

Find d2ydx2\frac { d ^ { 2 } y } { d x ^ { 2 } } for the parametric curve given by x=t4t2+t,y=t3x = t ^ { 4 } - t ^ { 2 } + t , y = \sqrt [ 3 ] { t }

(Essay)
4.8/5
(34)

If f(x)=x5f ( x ) = x ^ { 5 } , then, f(5)(3)f ^ { ( 5 ) } ( 3 ) .

(Multiple Choice)
4.9/5
(36)

Find the value of the limit limx0cosx12x\lim _ { x \rightarrow 0 } \frac { \cos x - 1 } { 2 x } .

(Multiple Choice)
4.8/5
(33)

If you were to drag a 200 pound object along a horizontal surface, then the smallest force F that is necessary to drag that object is given by F(θ)=200kcosθ+ksinθF ( \theta ) = \frac { 200 k } { \cos \theta + k \sin \theta } where θ\theta is the angle (in radians) your arm makes with the ground and k > 0 is the coefficient of friction for the surface. Find a formula for F(θ) for 0θπ2F ^ { \prime } ( \theta ) \text { for } 0 \leq \theta \leq \frac { \pi } { 2 }

(Essay)
4.8/5
(37)

Find dydx\frac { d y } { d x } .(a) y=(x+1x3)4y = \left( \frac { x + 1 } { x - 3 } \right) ^ { 4 } (b) y=e2x+e99y = e ^ { 2 x } + e ^ { 99 } (c) y=xex2+7y = x e ^ { x ^ { 2 } + 7 } (d) y=tan(sinx2)y = \tan \left( \sin x ^ { 2 } \right)

(Essay)
4.9/5
(31)

Find the exact value of sin1(sin5π6)\sin ^ { - 1 } \left( \sin \frac { 5 \pi } { 6 } \right) .

(Multiple Choice)
4.8/5
(41)

Find the linear approximation to f(x)=e3xf ( x ) = e ^ { - 3 x } at a = 0.

(Multiple Choice)
4.9/5
(37)

Suppose that h (x) = f (g (x)) and that we are given the following information: x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 f(x) 2.2 2.4 2.7 3.0 3.3 3.6 4.0 g(x) 0.85 0.60 0.50 0.40 0.25 0.10 0.00 Use the table to estimate the value of hh ^ { \prime } (0:3). Justify your estimation.

(Essay)
4.8/5
(37)

x f(x) (x) g(x) (x) -6 7 -8 -6 7 -4 1 -5 0 5 -2 3 -2 4 3 0 5 0 6 1 2 -5 1 6 -1 4 -3 3 4 -3 6 1 5 0 -5 -Find ddx(f(x)g(x)) when x=0\frac { d } { d x } \left( \frac { f ( x ) } { g ( x ) } \right) \text { when } x = 0

(Multiple Choice)
4.8/5
(36)

Find the critical numbers for f(x)=tan1(xa)tan1(xb),a>bf ( x ) = \tan ^ { - 1 } \left( \frac { x } { a } \right) - \tan ^ { - 1 } \left( \frac { x } { b } \right) , a > b and identify each as a relative maximum, relative minimum, or neither.

(Essay)
4.9/5
(39)

Let f(x)=xlnxf ( x ) = \sqrt { x } \ln x . Find the interval on which ff is increasing.

(Multiple Choice)
4.9/5
(40)

Passing through the origin (0, 0), there are two lines tangent to the curve y=x2+1y = x ^ { 2 } + 1 , one with negative slope, the other with positive slope. Find the value of the positive slope.

(Multiple Choice)
4.8/5
(37)

Show that the curves x33xy2+y=0x ^ { 3 } - 3 x y ^ { 2 } + y = 0 and 3x2yy3x=43 x ^ { 2 } y - y ^ { 3 } - x = 4 are orthogonal.

(Essay)
4.8/5
(27)

Find the point(s) where the tangent to the curve y=xx2+4y = \frac { x } { x ^ { 2 } + 4 } has zero slope.

(Essay)
4.8/5
(35)

Find the linear approximation of the function f (x) = x+24\sqrt { x + 24 } at x 11 = 1 and use it to approximate 24.98\sqrt { 24.98 } .

(Multiple Choice)
4.9/5
(41)

If x4+y4=1x ^ { 4 } + y ^ { 4 } = 1 , find an expression for d2ydx2\frac { d ^ { 2 } y } { d x ^ { 2 } } .

(Multiple Choice)
4.9/5
(43)

The following table shows the relationship between pressure (in atmospheres) and volume (in liters) of hydrogen gas at 0 °C. Pressure (atm) 1 2 3 4 5 6 Volume (L) 22.4 11.2 7.5 5.6 4.5 3.7 (a) Find the average rate of change of volume with respect to pressure for the following pressure intervals: (i) [1, 3] (ii) [2, 3] (iii) [4, 5] (b) Plot the data points and fit an appropriate power function to these data.(c) Use the model from part (b) and determine the instantaneous rate of change of volume with respect to pressure.(d) Compare the instantaneous rate at P = 5 with the average rate for [4, 5]. Which is larger? Why is this the case?

(Essay)
4.8/5
(31)

Find the derivative of f(x)=(xx)(x+x)f ( x ) = ( x - \sqrt { x } ) ( x + \sqrt { x } ) .

(Multiple Choice)
4.8/5
(42)

Find the slope of the tangent to the curve y=sin2x+sin2xy = \sin ^ { 2 } x + \sin 2 x when x=π4x = \frac { \pi } { 4 } .

(Multiple Choice)
4.9/5
(34)
Showing 221 - 240 of 248
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)