Exam 3: Differentiation Rules

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let f(x)=(sinx)xf ( x ) = ( \sin x ) ^ { x } . Find the value of f(π2)f ^ { \prime } \left( \frac { \pi } { 2 } \right) .

(Multiple Choice)
4.8/5
(40)

Find the slope of the tangent line to the curve y = 11+2x\frac { 1 } { 1 + 2 x } at the point (1, 13\frac { 1 } { 3 } ).

(Multiple Choice)
4.9/5
(35)

Find the x-coordinate(s) of the point(s) where the tangent to the curve y=x+2cosx,0x2πy = x + 2 \cos x , 0 \leq x \leq 2 \pi has zero slope.

(Essay)
4.8/5
(36)

Differentiate the following functions: (a) f(x)=(lnx)3f ( x ) = ( \ln x ) ^ { 3 } (b) f(x)=xlnxf ( x ) = \sqrt { x } \ln x (c) f(x)=ln(tanxx2+1)f ( x ) = \ln \left( \frac { \tan x } { x ^ { 2 } + 1 } \right)

(Essay)
4.8/5
(42)

Let f(x)=(x)xf ( x ) = ( \sqrt { x } ) ^ { x } . Find the value of f(1)f ^ { \prime } ( 1 ) .

(Multiple Choice)
4.9/5
(43)

Let f(x)=x34x2f ( x ) = x ^ { 3 } - 4 x ^ { 2 } (a) Find a linear approximation of f at x = 1.(b) Use this linear approximation to predict the value of the function at -1, 0, 0.9, 1.1, 2, and 3.(c) Make a table comparing your estimates with the actual function values. Discuss what this tells you about the linear approximation.(d) Graph the original function and its linear approximation over the interval [-1; 3]. What does the graph tell you about the size of the difference between the function values and the linear approximation values?

(Essay)
4.7/5
(33)

Find the derivative of f(x)=1(12x)3f ( x ) = \frac { 1 } { ( 1 - 2 x ) ^ { 3 } } .

(Multiple Choice)
4.8/5
(35)

Find the linear approximation of the function f (x) = x+24\sqrt { x + 24 } at x 11 = 1 and use it to approximate 25.05\sqrt { 25.05 } .

(Multiple Choice)
4.9/5
(45)

If x+y+xy=4\sqrt { x + y } + \sqrt { x - y } = 4 find the value of dydx\frac { d y } { d x } at the point (5, 4).

(Essay)
4.9/5
(45)

Simplify the express: sec(tan1x)\sec \left( \tan ^ { - 1 } x \right) .

(Multiple Choice)
4.8/5
(30)

Let y=x2y = x ^ { 2 } , x = 3, and Δ\Delta x = 1. Find the value of the corresponding change Δ\Delta y.

(Multiple Choice)
4.8/5
(34)

Find an equation of the tangent line to y=x4x3y = x ^ { 4 } - x ^ { 3 } at (-1, 2).

(Essay)
4.8/5
(42)

Let f (x) = cos2x\cos ^ { 2 } x .(a) Find a linear approximation of f at x = π3.\frac { \pi } { 3 } . (b) Use this linear approximation to predict the value of the function at π31,π30.1,π3+1\frac { \pi } { 3 } - 1 , \frac { \pi } { 3 } - 0.1 , \frac { \pi } { 3 } + 1 \text {, } and π3+0.1\frac { \pi } { 3 } + 0.1 (c) Make a table comparing your estimates with the actual function values. Discuss what this tells you about the linear approximation.(d) Graph the original function and its linear approximation over the interval [π31,π3+1]\left[ \frac { \pi } { 3 } - 1 , \frac { \pi } { 3 } + 1 \right] What does the graph tell you about the size of the difference between the function values and the linear approximation values?

(Essay)
4.8/5
(26)

Let f(x)=log3x2f ( x ) = \log _ { 3 } x ^ { 2 } . Find the value of f(2)f ^ { \prime } ( 2 ) .

(Multiple Choice)
4.8/5
(34)

Let f(x)=e1/xf ( x ) = e ^ { - 1 / x } Find the value of f(1)f ^ { \prime } ( 1 )

(Multiple Choice)
4.9/5
(32)

Given f(3)=5f ( 3 ) = 5 , f(3)=1.1f ^ { \prime } ( 3 ) = 1.1 , g(3)=4g ( 3 ) = - 4 and g(3)=0.7g ^ { \prime } ( 3 ) = 0.7 , find the value of (f2g)(3)( f - 2 g ) ^ { \prime } ( 3 ) .

(Multiple Choice)
4.9/5
(36)

A particle moves along a straight line with equation of motion s=t3t2s = t ^ { 3 } - t ^ { 2 } . Find the value of t at which the acceleration is equal to zero.

(Multiple Choice)
4.8/5
(31)

The cost function of manufacturing x meters of a fabric is C(x)=20,000+5x0.004x2+0.000003x3C ( x ) = 20,000 + 5 x - 0.004 x ^ { 2 } + 0.000003 x ^ { 3 } .

(Essay)
4.7/5
(24)

Let f(x)=x2xf ( x ) = x ^ { 2 x } . Find the value of f(1)f ^ { \prime } ( 1 ) .

(Multiple Choice)
4.8/5
(38)

Find the derivative of f(x)=sin2xf ( x ) = \sin ^ { 2 } x .

(Multiple Choice)
5.0/5
(37)
Showing 21 - 40 of 248
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)