Exam 3: Differentiation Rules

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

A particle moves along a straight line with equation of motion s=t23t+2s = t ^ { 2 } - 3 t + 2 . Find the value of t at which the particle reverses its direction.

(Multiple Choice)
4.8/5
(37)

f and g are functions whose graphs are shown below. Let F(x)=f(g(x)),G(x)=g(f(x))F ( x ) = f ( g ( x ) ) , G ( x ) = g ( f ( x ) ) and H(x)=f(f(x))H ( x ) = f ( f ( x ) ) Find each derivative, if it exists. If it does not exist, explain.  f and g are functions whose graphs are shown below. Let  F ( x ) = f ( g ( x ) ) , G ( x ) = g ( f ( x ) )  and  H ( x ) = f ( f ( x ) )  Find each derivative, if it exists. If it does not exist, explain.   (a)  F ^ { \prime } ( 2 )  (b)  F ^ { \prime } ( 6 )  (c)  F ^ { \prime } ( 8 )  (d)  G ^ { \prime } ( 2 )  (e)  G ^ { \prime } ( 4 )  (f)  G ^ { \prime } ( 10 )  (g)  H ^ { \prime } ( 4 )  (h)  H ^ { \prime } ( 6 )  (i)  H ^ { \prime } ( 10 ) (a) F(2)F ^ { \prime } ( 2 ) (b) F(6)F ^ { \prime } ( 6 ) (c) F(8)F ^ { \prime } ( 8 ) (d) G(2)G ^ { \prime } ( 2 ) (e) G(4)G ^ { \prime } ( 4 ) (f) G(10)G ^ { \prime } ( 10 ) (g) H(4)H ^ { \prime } ( 4 ) (h) H(6)H ^ { \prime } ( 6 ) (i) H(10)H ^ { \prime } ( 10 )

(Essay)
4.9/5
(40)

Find the exact value of tan(cos122)\tan \left( \cos ^ { - 1 } \frac { \sqrt { 2 } } { 2 } \right) .

(Multiple Choice)
4.9/5
(38)

Find the y-intercept of the tangent line to the curve y=x+3y = \sqrt { x + 3 } at the point (1, 2).

(Multiple Choice)
4.7/5
(45)

Find dydx.\frac { d y } { d x } . (a) y=2xx2y = \sqrt { 2 x - x ^ { 2 } } (b) y=(x2+1)50y = \left( x ^ { 2 } + 1 \right) ^ { 50 } (c) y=sin(1x)y = \sin \left( \frac { 1 } { x } \right) (d) y=tan(3x)y = \tan ( 3 x )

(Essay)
4.8/5
(38)

Let y=f(x)y = f ( x ) If xy3+xy=6 and f(3)=1, find f(3)x y ^ { 3 } + x y = 6 \text { and } f ( 3 ) = 1 , \text { find } f ^ { \prime } ( 3 )

(Multiple Choice)
4.9/5
(43)

Find an equation of the tangent line to the curve y=(x2+1)3y = \left( x ^ { 2 } + 1 \right) ^ { 3 } at the point (1, 8).

(Essay)
4.8/5
(37)

Find the domain of the function f(x)=sin1(32x)f ( x ) = \sin ^ { - 1 } ( 3 - 2 x ) .

(Multiple Choice)
4.9/5
(39)

If f(x)=1x2f ( x ) = - \frac { 1 } { x ^ { 2 } } , find f(1)f ^ { \prime } ( 1 ) .

(Multiple Choice)
4.8/5
(43)

A stone is thrown into a pond, creating a circular wave whose radius increases at the rate of 1 foot per second. In square feet per second, how fast is the area of the circular ripple increasing 3 seconds after the stone hits the water?

(Multiple Choice)
4.8/5
(43)

The position function for a particle is s(t)=16t2+48t+100s ( t ) = 16 t ^ { 2 } + 48 t + 100 , where s is measured in feet and t is measured in seconds.(a) Find the velocity at t = 2.(b) When does the velocity equal zero?

(Short Answer)
4.8/5
(34)

Suppose that w=uvw = u \circ v and u(0)=1,v(0)=2,u(0)=3,u(2)=4,v(0)=5u ( 0 ) = 1 , v ( 0 ) = 2 , u ^ { \prime } ( 0 ) = 3 , u ^ { \prime } ( 2 ) = 4 , v ^ { \prime } ( 0 ) = 5 and v(2)=6v ^ { \prime } ( 2 ) = 6 Find w(0)w ^ { \prime } ( 0 )

(Multiple Choice)
4.8/5
(38)

The angular displacement θ\theta of a simple pendulum is given by θ=θ0sin(ωt+ϕ)\theta = \theta _ { 0 } \sin ( \omega t + \phi ) where θ0\theta _ { 0 } is the angular amplitude, ω\omega the angular frequency and θ\theta a phase constant depending on initial conditions. If we are given that ω\omega = 10 and ϕ=π2\phi = \frac { \pi } { 2 } , find the angular velocity dθdt\frac { d \theta } { d t } when θ=θ02\theta = \frac { \theta _ { 0 } } { 2 } .

(Essay)
4.9/5
(38)

If f(x)=cos2(2x), find f(π3)f ( x ) = \cos ^ { 2 } ( 2 x ) , \text { find } f ^ { \prime } \left( \frac { \pi } { 3 } \right)

(Multiple Choice)
4.9/5
(37)

Find dydx\frac { d y } { d x } if xsiny+cos2y+xex4=4x \sin y + \cos 2 y + x e ^ { x ^ { 4 } } = 4 .

(Essay)
4.9/5
(40)

Suppose that g(x)g ( x ) is a differentiable function. Find f(x)f ^ { \prime } ( x ) for each of the following, in terms of g(x)g ( x ) and g(x)g ^ { \prime } ( x ) .(a) f(x)=exg(x)f ( x ) = e ^ { x } g ( x ) (b) f(x)=3x1g(x)f ( x ) = \frac { 3 x - 1 } { g ( x ) } (c) f(x)=g(x)(3x28)f ( x ) = g ( x ) \left( 3 x ^ { 2 } - 8 \right) (d) f(x)=x(g(x)+4)f ( x ) = \sqrt { x } ( g ( x ) + 4 )

(Essay)
4.9/5
(31)

Let x(t)=200(1e3200t)x ( t ) = 200 \left( 1 - e ^ { - \frac { 3 } { 200 } t } \right) be the amount of salt (in kg) in a tank after time t minutes. Find: (a) How much salt is in the tank after 1 hour? (b) Find the rate of change of salt after 1 hour?

(Essay)
4.7/5
(34)

Find the slope of the tangent to the curve x=12sint,y=3costx = 1 - 2 \sin t , y = 3 \cos t when t=π3t = \frac { \pi } { 3 }

(Multiple Choice)
4.8/5
(46)

Find the y-intercept of the tangent line to the curve y=xsin(2x)y = x \sin ( 2 x ) at the point ( π2\frac { \pi } { 2 } , 0).

(Essay)
4.8/5
(43)

If x+y=3\sqrt { x } + \sqrt { y } = 3 find the value of dydx\frac { d y } { d x } at the point (4, 1).

(Multiple Choice)
4.8/5
(36)
Showing 141 - 160 of 248
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)