Exam 3: Differentiation Rules

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The period of a pendulum is given by the formula T = 2 π\pi Lg\sqrt { \frac { L } { g } } , where L is the length of the pendulum in feet, g = 32 ft/ S2S ^ { 2 } is the acceleration due to gravity, and T is the length of one period in seconds. If the length of the pendulum is measured to be three feet long to within ±18\pm \frac { 1 } { 8 } inch, what is the approximate percentage error in the calculated period, T?

(Essay)
4.8/5
(37)

The function f is graphed below.  The function f is graphed below.   Let  g ( x ) = f ( f ( x ) ) , h ( x ) = f \left( x ^ { 3 } \right)  and  k ( x ) = [ f ( x ) ] ^ { 3 }  .Use the graph to estimate each of the following.(a)  g ^ { \prime } ( 2 )  (b)  h ^ { \prime } ( 2 )  (c)  k ^ { \prime } ( 2 ) Let g(x)=f(f(x)),h(x)=f(x3)g ( x ) = f ( f ( x ) ) , h ( x ) = f \left( x ^ { 3 } \right) and k(x)=[f(x)]3k ( x ) = [ f ( x ) ] ^ { 3 } .Use the graph to estimate each of the following.(a) g(2)g ^ { \prime } ( 2 ) (b) h(2)h ^ { \prime } ( 2 ) (c) k(2)k ^ { \prime } ( 2 )

(Essay)
4.7/5
(37)

Let f(x)=tan1(x2+1)f ( x ) = \tan ^ { - 1 } \left( x ^ { 2 } + 1 \right) . Find the value of f(1)f ^ { \prime } ( 1 ) .

(Multiple Choice)
4.8/5
(44)

Find the minimum value of f(x)=x1xf ( x ) = x ^ { - \frac { 1 } { x } } .

(Multiple Choice)
4.7/5
(44)

Find an equation of the tangent line to the curve y=1x1+x at (2,3)y = \frac { 1 - x } { 1 + x } \text { at } ( - 2 , - 3 )

(Multiple Choice)
4.9/5
(40)

Differentiate the following functions: (a) f(x)=x3exf ( x ) = x ^ { 3 } e ^ { x } (b) g(x)=x2+1x21g ( x ) = \frac { x ^ { 2 } + 1 } { x ^ { 2 } - 1 } (c) h(x)=exex+1h ( x ) = \frac { e ^ { x } } { e ^ { x } + 1 } (d) (x)=(11x)2\varnothing ( x ) = \left( 1 - \frac { 1 } { x } \right) ^ { 2 }

(Essay)
4.9/5
(32)

Find an equation of the tangent line to the curve 2x3+2y39xy=02 x ^ { 3 } + 2 y ^ { 3 } - 9 x y = 0 at the point (1, 2).

(Essay)
5.0/5
(40)

Find the value of the limit limx0sin6tsin4t\lim _ { x \rightarrow 0 } \frac { \sin 6 t } { \sin 4 t } .

(Multiple Choice)
4.9/5
(34)

Find the linear approximation to f(x)=1x3+1f ( x ) = \frac { 1 } { \sqrt { x ^ { 3 } + 1 } } at a=2.a = 2 .

(Multiple Choice)
4.8/5
(32)

Let f(x)=log10πxf ( x ) = \log _ { 10 } \pi ^ { x } . Find the value of f(100)f ^ { \prime } ( 100 ) .

(Multiple Choice)
4.8/5
(40)

Let f(x)=sin1(2x)f ( x ) = \sin ^ { - 1 } ( 2 x ) . Find the value of f(0)f ^ { \prime } ( 0 ) .

(Multiple Choice)
4.9/5
(39)

Find the derivative of f(x)=tanxx3f ( x ) = \frac { \tan x } { x ^ { 3 } } .

(Multiple Choice)
4.8/5
(39)

Use differentials to approximate 26\sqrt { 26 } .

(Multiple Choice)
4.8/5
(34)

Find the derivative of f(x)=sin3xf ( x ) = \sin ^ { 3 } x .

(Multiple Choice)
4.8/5
(30)

If sin y = x, find the value of dydx\frac { d y } { d x } at the point (12,π6)\left( \frac { 1 } { 2 } , \frac { \pi } { 6 } \right) .

(Essay)
4.7/5
(44)

The curve y2x2y6=0y ^ { 2 } - x ^ { 2 } y - 6 = 0 has two tangents at x = 1. What are their equations?

(Short Answer)
4.7/5
(40)

Find the slope of the tangent line to the curve x3+y3=6xyx ^ { 3 } + y ^ { 3 } = 6 x y at the point (3, 3).

(Multiple Choice)
5.0/5
(47)

Find an equation of the tangent to the curve y=2sin2x at x=π4y = 2 \sin ^ { 2 } x \text { at } x = \frac { \pi } { 4 }

(Essay)
4.8/5
(36)

Find the derivative of f(x)=ex(x2+2)f ( x ) = e ^ { x } \left( x ^ { 2 } + 2 \right) .

(Multiple Choice)
4.8/5
(40)

Find the linear approximation to f(x)=1(2+x)3f ( x ) = \frac { 1 } { ( 2 + x ) ^ { 3 } } at a=0a = 0

(Multiple Choice)
4.9/5
(39)
Showing 61 - 80 of 248
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)