Exam 12: Parametric Equations and Polar Coordinates

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the standard-form equation for an ellipse which satisfies the given conditions. -An ellipse centered at the origin having focus (35,0)( \sqrt { 35 } , 0 ) and directrix x=3635x = \frac { 36 } { \sqrt { 35 } }

(Multiple Choice)
4.9/5
(39)

If the equation represents a hyperbola, find the center, foci, and asymptotes. If the equation represents an ellipse, find the center, vertices, and foci. If the equation represents a circle, find the center and radius. If the equation represents a parabola, find the focus and directrix. - 16x2+128x+25y2+250y+481=016 x ^ { 2 } + 128 x + 25 y ^ { 2 } + 250 y + 481 = 0

(Multiple Choice)
4.8/5
(39)

Graph the parabola. - y2=2xy ^ { 2 } = - 2 x  Graph the parabola. - y ^ { 2 } = - 2 x

(Multiple Choice)
4.9/5
(32)

Find the area. -  Find the area of the region between the curve x=e5t,y=15e4t and the x-axis, 0tln9\text { Find the area of the region between the curve } x = e ^ { 5 t } , y = \frac { 1 } { 5 } e ^ { - 4 t } \text { and the } x \text {-axis, } 0 \leq t \leq \ln 9 \text {. }

(Multiple Choice)
4.8/5
(27)

Describe the graph of the polar equation. - rcosθ=10r \cos \theta = 10

(Multiple Choice)
4.9/5
(33)

Find the area of the surface generated by revolving the curves about the indicated axis. - x=t+30,y=t22+30t,30t30;yx = t + \sqrt { 30 } , y = \frac { t ^ { 2 } } { 2 } + \sqrt { 30 } t , - \sqrt { 30 } \leq t \leq \sqrt { 30 } ; y -axis

(Multiple Choice)
4.9/5
(40)

Solve the problem. -The ellipse x2400+y2256=1\frac { x ^ { 2 } } { 400 } + \frac { y ^ { 2 } } { 256 } = 1 is shifted horizontally and vertically to obtain the ellipse (x+4)2400+(y+5)2256=1\frac { ( x + 4 ) ^ { 2 } } { 400 } + \frac { ( y + 5 ) ^ { 2 } } { 256 } = 1 Find the center and vertices of the new ellipse.

(Multiple Choice)
4.9/5
(35)

Find an equation for the line tangent to the curve at the point defined by the given value of t. - x=t+cost,y=2sint,t=π6x = t + \cos t , y = 2 - \sin t , t = \frac { \pi } { 6 }

(Multiple Choice)
4.8/5
(45)

Find the foci of the ellipse. - 49x2+64y2=313649 x ^ { 2 } + 64 y ^ { 2 } = 3136

(Multiple Choice)
4.8/5
(39)

Find the area of the specified region. -Inside the limacon r=7+6sinθr = 7 + 6 \sin \theta

(Multiple Choice)
4.8/5
(37)

Find an equation for the line tangent to the curve at the point defined by the given value of t. - x=4sint,y=4cost,t=3π4x = 4 \sin t , y = 4 \cos t , t = \frac { 3 \pi } { 4 }

(Multiple Choice)
4.9/5
(35)

Replace the polar equation with an equivalent Cartesian equation. - 8rcosθ+9rsinθ=18 r \cos \theta + 9 r \sin \theta = 1

(Multiple Choice)
4.9/5
(36)

Find the eccentricity of the ellipse. - x2+4y2=4x ^ { 2 } + 4 y ^ { 2 } = 4

(Multiple Choice)
4.7/5
(42)

Find the directrices of the ellipse. - x2+36y2=36x ^ { 2 } + 36 y ^ { 2 } = 36

(Multiple Choice)
4.8/5
(41)

If the equation represents a hyperbola, find the center, foci, and asymptotes. If the equation represents an ellipse, find the center, vertices, and foci. If the equation represents a circle, find the center and radius. If the equation represents a parabola, find the focus and directrix. - x2+y214x+18y=114x ^ { 2 } + y ^ { 2 } - 14 x + 18 y = - 114

(Multiple Choice)
4.9/5
(32)

Replace the polar equation with an equivalent Cartesian equation. - r2+2r2sinθcosθ=625r ^ { 2 } + 2 r ^ { 2 } \sin \theta \cos \theta = 625

(Multiple Choice)
4.8/5
(32)

Find the Cartesian coordinates of the given point. - (9,π)( 9 , \pi )

(Multiple Choice)
4.8/5
(32)

Find the area of the specified region. -Inside the lemniscate r2=4sin2θr ^ { 2 } = 4 \sin 2 \theta and outside the circle r=2r = \sqrt { 2 }

(Multiple Choice)
4.7/5
(33)

Solve the problem. -Find the coordinates of the centroid of the area bounded by y=x2y = x ^ { 2 } and y=3y = 3

(Multiple Choice)
4.9/5
(43)

Assuming that the equations define x and y implicitly as differentiable functions x = f(t), y = g(t), find the slope of the curve x = f(t), y = g(t) at the given value of t. - xcost+x=2t,y=tsint+t,t=π2x \cos t + x = 2 t , y = t \sin t + t , t = \frac { \pi } { 2 }

(Multiple Choice)
4.8/5
(40)
Showing 201 - 220 of 396
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)