Exam 12: Parametric Equations and Polar Coordinates

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Graph the polar equation. - r=2cosθ\mathrm { r } = 2 - \cos \theta  Graph the polar equation. - \mathrm { r } = 2 - \cos \theta

(Multiple Choice)
4.7/5
(41)

Solve the problem. -The parabola x2=12yx ^ { 2 } = - 12 y is shifted down 6 units and right 3 units. Find an equation for the new parabola and find the new vertex.

(Multiple Choice)
4.9/5
(35)

 Find the polar coordinates, 0θ<2π and r0, of the point given in Cartesian coordinates. \text { Find the polar coordinates, } 0 \leq \theta < 2 \pi \text { and } r \geq 0 \text {, of the point given in Cartesian coordinates. } - (16,36)\left( \frac { 1 } { 6 } , \frac { \sqrt { 3 } } { 6 } \right)

(Multiple Choice)
4.7/5
(38)

Find the area of the specified region. -Inside the lemniscate r2=a2sin2θ,a>0r ^ { 2 } = a ^ { 2 } \sin 2 \theta , a > 0

(Multiple Choice)
4.9/5
(41)

 Find the value of d2y/dx2 at the point defined by the given value of t\text { Find the value of } d ^ { 2 } y / d x ^ { 2 } \text { at the point defined by the given value of } t \text {. } - x=3sint,y=3cost,t=3π4x = 3 \sin t , y = 3 \cos t , t = \frac { 3 \pi } { 4 }

(Multiple Choice)
4.7/5
(30)

Provide an appropriate response. -True or false? If n>0\mathrm { n } > 0 is an even integer, then the area of the region enclosed by r=sinnθ\mathrm { r } = \sin \mathrm { n } \theta is twice the area of the region enclosed by r=sin[(n+1)θ]r = \sin [ ( n + 1 ) \theta ] .

(True/False)
4.8/5
(36)

Find an equation for the line tangent to the curve at the point defined by the given value of t. - x=csct,y=18cott,t=π3x = \csc t , y = 18 \cot t , t = \frac { \pi } { 3 }

(Multiple Choice)
4.8/5
(39)

Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=5t+5,y=15t+9,tx=5 t+5, y=15 t+9,-\leq t \leq \infty  Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=5 t+5, y=15 t+9,-\leq t \leq \infty

(Multiple Choice)
4.8/5
(26)

Find the vertices and foci of the ellipse. - 196x2+64y2=12,544196 x ^ { 2 } + 64 y ^ { 2 } = 12,544

(Multiple Choice)
4.8/5
(41)

Find the length of the curve. - x=5sint+5t,y=5cost,0tπx = 5 \sin t + 5 t , y = 5 \cos t , 0 \leq t \leq \pi

(Multiple Choice)
4.7/5
(35)

Graph. - 36y24x2=14436 y^{2}-4 x^{2}=144  Graph. - 36 y^{2}-4 x^{2}=144

(Multiple Choice)
4.9/5
(37)

Describe the graph of the polar equation. - r2=38rcosθ6rsinθ9\mathrm { r } ^ { 2 } = 38 \mathrm { rcos } \theta - 6 r \sin \theta - 9

(Multiple Choice)
4.8/5
(30)

Describe the graph of the polar equation. - 5rcosθ+rsinθ=75 r \cos \theta + r \sin \theta = 7

(Multiple Choice)
4.9/5
(38)

Find the Cartesian coordinates of the given point. - (8,11π3)\left( 8 , \frac { 11 \pi } { 3 } \right)

(Multiple Choice)
4.7/5
(38)

Find the area of the specified region. -Shared by the circles r=3cosθr = 3 \cos \theta and r=3sinθr = 3 \sin \theta

(Multiple Choice)
4.9/5
(44)

Find the focus and directrix of the parabola. - x2=36yx ^ { 2 } = 36 y

(Multiple Choice)
4.8/5
(37)
Showing 381 - 396 of 396
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)