Exam 12: Parametric Equations and Polar Coordinates

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -The parabola y2=20xy ^ { 2 } = - 20 x is shifted 7 units down and 2 units to the right. Find the focus and directrix of the new parabola.

(Multiple Choice)
4.9/5
(34)

Find the area of the specified region. -Inside the cardioid r=α(1+sinθ),α>0r = \alpha ( 1 + \sin \theta ) , \alpha > 0

(Multiple Choice)
4.8/5
(45)

Choose the equation that matches the graph. -Choose the equation that matches the graph. -

(Multiple Choice)
4.8/5
(35)

Find a Cartesian equation for the line whose polar equation is given. - rcos(θπ6)=2r \cos \left( \theta - \frac { \pi } { 6 } \right) = 2

(Multiple Choice)
4.9/5
(35)

The eccentricity is given of a conic section with one focus at the origin, along with the directrix corresponding to that focus. Find a polar equation for the conic section. - e=14,x=2e = \frac { 1 } { 4 } , x = 2

(Multiple Choice)
4.8/5
(40)

Solve the problem. -Find the foci and asymptotes of the following hyperbola: y2400x2225=1\frac { y ^ { 2 } } { 400 } - \frac { x ^ { 2 } } { 225 } = 1

(Multiple Choice)
4.7/5
(34)

Find the eccentricity of the hyperbola. - 9x216y2=1449 x ^ { 2 } - 16 y ^ { 2 } = 144

(Multiple Choice)
4.8/5
(43)

Find the standard-form equation of the hyperbola centered at the origin which satisfies the given conditions. -Vertices at (0, 6) and (0, -6); foci at (0, 9) and (0, -9)

(Multiple Choice)
4.8/5
(40)

Sketch the region which is defined by the given conditions. - πθ3π2,r=4\pi \leq \theta \leq \frac { 3 \pi } { 2 } , r = - 4  Sketch the region which is defined by the given conditions. - \pi \leq \theta \leq \frac { 3 \pi } { 2 } , r = - 4

(Multiple Choice)
4.8/5
(36)

Find the length of the curve. - x=cos2t,y=sin2t,0t2πx = \cos 2 t , y = \sin 2 t , 0 \leq t \leq 2 \pi

(Multiple Choice)
4.8/5
(42)

Solve the problem. -Find the volume of the solid generated by revolving the region enclosed by the ellipse 4x2+25y2=1004 x ^ { 2 } + 25 y ^ { 2 } = 100 about the xx -axis.

(Multiple Choice)
4.8/5
(48)

Find the length of the curve. - x=13(t33t),y=t2+6,0t2x = \frac { 1 } { 3 } \left( t ^ { 3 } - 3 t \right) , y = t ^ { 2 } + 6,0 \leq t \leq 2

(Multiple Choice)
4.8/5
(35)

Sketch the region which is defined by the given conditions. - 0θπ4,0r40 \leq \theta \leq \frac { \pi } { 4 } , 0 \leq \mathrm { r } \leq 4  Sketch the region which is defined by the given conditions. - 0 \leq \theta \leq \frac { \pi } { 4 } , 0 \leq \mathrm { r } \leq 4

(Multiple Choice)
4.7/5
(43)

Find the focus and directrix of the parabola. - y2=36xy ^ { 2 } = 36 x

(Multiple Choice)
4.9/5
(33)

 Find the value of d2y/dx2 at the point defined by the given value of t\text { Find the value of } d ^ { 2 } y / d x ^ { 2 } \text { at the point defined by the given value of } t \text {. } - x=t+3,y=t,t=46x = \sqrt { t + 3 } , y = - t , t = 46

(Multiple Choice)
4.7/5
(43)

Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2sint,y=5cost,0t2πx=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi  Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=2 \sin t, y=5 \cos t, 0 \leq t \leq 2 \pi

(Multiple Choice)
4.8/5
(40)

Graph the polar equation. - r=4(1sinθ)\mathrm { r } = 4 ( 1 - \sin \theta )  Graph the polar equation. - \mathrm { r } = 4 ( 1 - \sin \theta )

(Multiple Choice)
4.8/5
(36)

Find the standard-form equation for a hyperbola which satisfies the given conditions. -A hyperbola centered at the origin having vertex at (0, -8) and eccentricity equal to 2

(Multiple Choice)
4.9/5
(36)

Find a Cartesian equation for the line whose polar equation is given. - rcos(θ+π4)=52\mathrm { r } \cos \left( \theta + \frac { \pi } { 4 } \right) = 5 \sqrt { 2 }

(Multiple Choice)
4.8/5
(34)

Provide an appropriate response. -Find the error in the following "proof" that the area inside the lemniscate r2=a2cos2θr ^ { 2 } = a ^ { 2 } \cos 2 \theta is 0 and then find the correct area. A=02π12r2dθ=02π12a2cos2θdθ=14a2sin2θ]02π=0\left. A = \int _ { 0 } ^ { 2 \pi } \frac { 1 } { 2 } r ^ { 2 } d \theta = \int _ { 0 } ^ { 2 \pi } \frac { 1 } { 2 } a ^ { 2 } \cos 2 \theta d \theta = \frac { 1 } { 4 } a ^ { 2 } \sin 2 \theta \right] _ { 0 } ^ { 2 \pi } = 0

(Essay)
4.8/5
(31)
Showing 341 - 360 of 396
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)