Exam 12: Parametric Equations and Polar Coordinates

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Graph the set of points whose polar coordinates satisfy the given equation or inequality. - 0θπ,r30 \leq \theta \leq \pi , r \leq 3  Graph the set of points whose polar coordinates satisfy the given equation or inequality. - 0 \leq \theta \leq \pi , r \leq 3

(Multiple Choice)
4.8/5
(35)

Find the standard-form equation of the hyperbola centered at the origin which satisfies the given conditions. -Foci at (20,0),(20,0)( - 20,0 ) , ( 20,0 ) ; asymptotes: y=34x,y=34xy = \frac { 3 } { 4 } x , y = - \frac { 3 } { 4 } x

(Multiple Choice)
4.8/5
(33)

Replace the polar equation with an equivalent Cartesian equation. - r2=50rcosθ6rsinθ9\mathrm { r } ^ { 2 } = 50 \mathrm { r } \cos \theta - 6 \mathrm { r } \sin \theta - 9

(Multiple Choice)
4.9/5
(46)

Find the length of the curve. - x=23(t2+2)3/2,y=2t,0t1x = \frac { 2 } { 3 } \left( t ^ { 2 } + 2 \right) ^ { 3 / 2 } , y = 2 t , 0 \leq t \leq 1

(Multiple Choice)
4.9/5
(44)

Graph. - 49x2+4y2=19649 x^{2}+4 y^{2}=196  Graph. - 49 x^{2}+4 y^{2}=196

(Multiple Choice)
4.8/5
(43)

Graph the pair of parametric equations with the aid of a graphing calculator. - x=4(tsint),y=4(1cost),0t4πx = 4 ( t - \sin t ) , y = 4 ( 1 - \cos t ) , 0 \leq t \leq 4 \pi  Graph the pair of parametric equations with the aid of a graphing calculator. - x = 4 ( t - \sin t ) , y = 4 ( 1 - \cos t ) , 0 \leq t \leq 4 \pi

(Multiple Choice)
4.8/5
(32)

Graph. - 16x2+36y2=57616 x^{2}+36 y^{2}=576  Graph. - 16 x^{2}+36 y^{2}=576

(Multiple Choice)
4.8/5
(37)

Plot the point whose polar coordinates are given. - (2,π/2)(-2, \pi / 2)  Plot the point whose polar coordinates are given. - (-2, \pi / 2)

(Multiple Choice)
4.8/5
(40)

Replace the Cartesian equation with an equivalent polar equation. - x2+y2=100x ^ { 2 } + y ^ { 2 } = 100

(Multiple Choice)
5.0/5
(37)

Determine the symmetries of the curve. - r=2sinθ2cosθr = - 2 \sin \theta - 2 \cos \theta

(Multiple Choice)
4.8/5
(33)

Graph the polar equation. - r=3(2+2sinθ)r = 3 ( 2 + 2 \sin \theta )  Graph the polar equation. - r = 3 ( 2 + 2 \sin \theta )

(Multiple Choice)
4.8/5
(32)

Find the eccentricity of the ellipse. -Find the eccentricity of an ellipse centered at the origin having a focus of (0,35)( 0 , \sqrt { 35 } ) and corresponding directrix yy =3635= \frac { 36 } { \sqrt { 35 } }

(Multiple Choice)
4.8/5
(33)

Find the standard-form equation of the hyperbola centered at the origin which satisfies the given conditions. -Asymptotes y=67x,y=67xy = \frac { 6 } { 7 } x , y = - \frac { 6 } { 7 } x ; one vertex is (7,0)( 7,0 )

(Multiple Choice)
4.9/5
(37)

Find the eccentricity of the hyperbola. - x22y2=6x ^ { 2 } - 2 y ^ { 2 } = 6

(Multiple Choice)
4.9/5
(32)

Find the area of the specified region. -Inside the circle r=8cosθ+9sinθr = 8 \cos \theta + 9 \sin \theta

(Multiple Choice)
4.7/5
(35)

Find the length of the curve. -The circle r=6sinθr = 6 \sin \theta

(Multiple Choice)
4.8/5
(35)

Replace the polar equation with an equivalent Cartesian equation. - r=7cotθcscθ\mathrm { r } = 7 \cot \theta \csc \theta

(Multiple Choice)
4.9/5
(36)

Provide an appropriate response. -Consider the curves corresponding to polar equations of the form r=1acosθ1+acosθr = \frac { 1 - a \cos \theta } { 1 + a \cos \theta } where a>0a > 0 . Explain how the graph changes as a changes. Identify any values of a for which the basic shape of the curve changes.

(Essay)
4.8/5
(43)

Provide an appropriate response. -How are the graphs of r=1+cos(θπ/6)r = 1 + \cos ( \theta - \pi / 6 ) and r=1+cos(θπ/4)r = 1 + \cos ( \theta - \pi / 4 ) related to the graph of r=1+cosθr = 1 + \cos \theta ? In general, how is the graph of r=f(θα)\mathrm { r } = \mathrm { f } ( \theta - \alpha ) related to the graph of r=f(θ)\mathrm { r } = \mathrm { f } ( \theta ) ?

(Essay)
4.8/5
(41)

Find the eccentricity of the ellipse. - 25x2+64y2=160025 x ^ { 2 } + 64 y ^ { 2 } = 1600

(Multiple Choice)
4.9/5
(39)
Showing 281 - 300 of 396
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)