Exam 12: Parametric Equations and Polar Coordinates

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -The hyperbola x2400y2225=1\frac { x ^ { 2 } } { 400 } - \frac { y ^ { 2 } } { 225 } = 1 is shifted horizontally and vertically to obtain the hyperbola (x+5)2400(y3)2225=1\frac { ( x + 5 ) ^ { 2 } } { 400 } - \frac { ( y - 3 ) ^ { 2 } } { 225 } = 1 Find the asymptotes of the new hyperbola.

(Multiple Choice)
4.9/5
(36)

Determine the symmetries of the curve. - r2=6sin3θr ^ { 2 } = 6 \sin 3 \theta

(Multiple Choice)
4.8/5
(35)

Find the area of the specified region. -Inside the six-leaved rose r2=5cos3θr ^ { 2 } = 5 \cos 3 \theta

(Multiple Choice)
4.8/5
(30)

Describe the graph of the polar equation. - r=11cscθ\mathrm { r } = - 11 \csc \theta

(Multiple Choice)
4.8/5
(31)

Find the length of the curve. - x=7sin3t,y=7cos3t,0tπx = 7 \sin ^ { 3 } t , y = 7 \cos ^ { 3 } t , 0 \leq t \leq \pi

(Multiple Choice)
5.0/5
(41)

Find the slope of the polar curve at the indicated point. - r=6cos3θ,θ=π3r = 6 \cos 3 \theta , \theta = \frac { \pi } { 3 }

(Multiple Choice)
4.8/5
(42)

Find the length of the curve. -The curve r=acos2(θ2),0θπ,a>0r = a \cos ^ { 2 } \left( \frac { \theta } { 2 } \right) , 0 \leq \theta \leq \pi , a > 0

(Multiple Choice)
4.9/5
(41)

Find the foci of the ellipse. - 9x2+25y2=2259 x ^ { 2 } + 25 y ^ { 2 } = 225

(Multiple Choice)
4.9/5
(30)

Graph the pair of parametric equations with the aid of a graphing calculator. - x=5cos2t+4cos6t,y=5sin2t4sin6t,0tπx = 5 \cos 2 t + 4 \cos 6 t , y = 5 \sin 2 t - 4 \sin 6 t , 0 \leq t \leq \pi  Graph the pair of parametric equations with the aid of a graphing calculator. - x = 5 \cos 2 t + 4 \cos 6 t , y = 5 \sin 2 t - 4 \sin 6 t , 0 \leq t \leq \pi

(Multiple Choice)
4.8/5
(28)

Find the area of the specified region. -Inside the circle r=6cosθr = - 6 \cos \theta and outside the circle r=3r = 3

(Multiple Choice)
4.8/5
(38)

 Find the polar coordinates, 0θ<2π and r0, of the point given in Cartesian coordinates. \text { Find the polar coordinates, } 0 \leq \theta < 2 \pi \text { and } r \geq 0 \text {, of the point given in Cartesian coordinates. } - (13,33)\left( \frac { 1 } { 3 } , \frac { - \sqrt { 3 } } { 3 } \right)

(Multiple Choice)
4.8/5
(28)

Find a polar equation for the circle. - (x+9)2+y2=81( x + 9 ) ^ { 2 } + y ^ { 2 } = 81

(Multiple Choice)
4.9/5
(37)

Solve the problem. -The hyperbola x25y216=1\frac { x ^ { 2 } } { 5 } - \frac { y ^ { 2 } } { 16 } = 1 is shifted down 8 units and right 2 units. Find an equation for the new hyperbola and find the new center.

(Multiple Choice)
4.9/5
(36)

Describe the graph of the polar equation. - r2=46rcosθr ^ { 2 } = 46 r \cos \theta

(Multiple Choice)
4.8/5
(42)

Graph the parabola or ellipse. Include the directrix that corresponds to the focus at the origin. - r=1533sinθr=\frac{15}{3-3 \sin \theta}  Graph the parabola or ellipse. Include the directrix that corresponds to the focus at the origin. - r=\frac{15}{3-3 \sin \theta}

(Multiple Choice)
4.8/5
(49)

Solve the problem. -The ellipse x216+y29=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1 is shifted up 6 units and left 8 units. Find an equation for the new ellipse and find the new center.

(Multiple Choice)
4.7/5
(34)

Find all the polar coordinates of the point. - (6,π/3)( - 6 , \pi / 3 )

(Multiple Choice)
4.8/5
(40)

The polar equation of a circle is given. Give polar coordinates for the center of the circle and identify its radius. - r=10sinθ\mathrm { r } = 10 \sin \theta

(Multiple Choice)
4.8/5
(45)

Replace the Cartesian equation with an equivalent polar equation. - x2y2=4x ^ { 2 } - y ^ { 2 } = 4

(Multiple Choice)
4.9/5
(27)

Find the slope of the polar curve at the indicated point. - r=5cosθ+8sinθ,θ=0r = 5 \cos \theta + 8 \sin \theta , \theta = 0

(Multiple Choice)
4.8/5
(44)
Showing 321 - 340 of 396
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)