Exam 12: Parametric Equations and Polar Coordinates

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -The ellipse x2400+y2144=1\frac { x ^ { 2 } } { 400 } + \frac { y ^ { 2 } } { 144 } = 1 is shifted horizontally and vertically to obtain the ellipse (x3)2400+(y+3)2144=1\frac { ( x - 3 ) ^ { 2 } } { 400 } + \frac { ( y + 3 ) ^ { 2 } } { 144 } = 1 Find the foci of the new ellipse.

(Multiple Choice)
4.9/5
(40)

Solve the problem. -The parabola y2=10xy ^ { 2 } = - 10 x is shifted down 5 units and left 7 units. Find an equation for the new parabola and find the new vertex.

(Multiple Choice)
4.9/5
(34)

Find the standard-form equation of the hyperbola centered at the origin which satisfies the given conditions. -Vertices at (0,4)( 0,4 ) and (0,4)( 0 , - 4 ) ; asymptotes y=23xy = \frac { 2 } { 3 } x and y=23xy = - \frac { 2 } { 3 } x

(Multiple Choice)
4.8/5
(37)

Provide an appropriate response. -Find any horizontal or vertical asymptotes for the spiral r=1θ,θ>0r = \frac { 1 } { \theta } , \theta > 0 . (Suggestion: Express the curve in parametric form (x=rcosθ,y=rsinθ)( \mathrm { x } = \mathrm { r } \cos \theta , \mathrm { y } = \mathrm { r } \sin \theta ) and investigate what happens to x\mathrm { x } and y\mathrm { y } as θ\theta varies. ))

(Essay)
4.7/5
(37)

Find the vertices and foci of the ellipse. - 49x2+25y2=122549 x ^ { 2 } + 25 y ^ { 2 } = 1225

(Multiple Choice)
4.9/5
(27)

Solve the problem. -The hyperbola y211x25=1\frac { y ^ { 2 } } { 11 } - \frac { x ^ { 2 } } { 5 } = 1 is shifted down 7 units and right 5 units. Find an equation for the new hyperbola and find the new vertices.

(Multiple Choice)
4.8/5
(44)

Find the slope of the polar curve at the indicated point. - r=8+5cosθ,θ=π2r = - 8 + 5 \cos \theta , \theta = \frac { \pi } { 2 }

(Multiple Choice)
4.9/5
(47)

Graph the parabola or ellipse. Include the directrix that corresponds to the focus at the origin. - r=124+4sinθr = \frac { 12 } { 4 + 4 \sin \theta }  Graph the parabola or ellipse. Include the directrix that corresponds to the focus at the origin. - r = \frac { 12 } { 4 + 4 \sin \theta }

(Multiple Choice)
4.9/5
(39)

Graph the pair of parametric equations with the aid of a graphing calculator. - x=4sintsin4t,y=4costcos4t,0t2πx=4 \sin t-\sin 4 t, y=4 \cos t-\cos 4 t, 0 \leq t \leq 2 \pi  Graph the pair of parametric equations with the aid of a graphing calculator. - x=4 \sin t-\sin 4 t, y=4 \cos t-\cos 4 t, 0 \leq t \leq 2 \pi

(Multiple Choice)
5.0/5
(43)

 Find the polar coordinates, 0θ<2π and r0, of the point given in Cartesian coordinates. \text { Find the polar coordinates, } 0 \leq \theta < 2 \pi \text { and } r \geq 0 \text {, of the point given in Cartesian coordinates. } -(4, -4)

(Multiple Choice)
4.8/5
(42)

Replace the Cartesian equation with an equivalent polar equation. -x = 11

(Multiple Choice)
4.9/5
(37)

Replace the Cartesian equation with an equivalent polar equation. - (x18)2+(y+3)2=324( x - 18 ) ^ { 2 } + ( y + 3 ) ^ { 2 } = 324

(Multiple Choice)
4.9/5
(43)

Find the slope of the polar curve at the indicated point. - r=5sin4θ,θ=0\mathrm { r } = 5 \sin 4 \theta , \theta = 0

(Multiple Choice)
4.7/5
(31)

Describe the graph of the polar equation. - r2+2r2sinθcosθ=144r ^ { 2 } + 2 r ^ { 2 } \sin \theta \cos \theta = 144

(Multiple Choice)
4.8/5
(34)

Solve the problem. -The hyperbola x2100y264=1\frac { x ^ { 2 } } { 100 } - \frac { y ^ { 2 } } { 64 } = 1 is shifted horizontally and vertically to obtain the hyperbola (x+5)2100(y+2)264=1\frac { ( x + 5 ) ^ { 2 } } { 100 } - \frac { ( y + 2 ) ^ { 2 } } { 64 } = 1 Find the center and vertices of the new hyperbola.

(Multiple Choice)
4.9/5
(39)

Find the focus and directrix of the parabola. - y=8x2y = 8 x ^ { 2 }

(Multiple Choice)
4.7/5
(29)

Find a Cartesian equation for the line whose polar equation is given. - rcos(θ5π6)=5r \cos \left( \theta - \frac { 5 \pi } { 6 } \right) = 5

(Multiple Choice)
4.9/5
(42)

Find the slope of the polar curve at the indicated point. - r=5θ,θ=4πr = \frac { 5 } { \theta } , \theta = 4 \pi

(Multiple Choice)
4.9/5
(38)

Find the standard-form equation of the hyperbola centered at the origin which satisfies the given conditions. -Foci at (17,0),(17,0)( \sqrt { 17 } , 0 ) , ( - \sqrt { 17 } , 0 ) ; asymptotes y=4x,y=4xy = 4 x , y = - 4 x

(Multiple Choice)
4.7/5
(36)

Find the eccentricity of the ellipse. -Find the eccentricity of an ellipse centered at the origin having a focus of (11,0)( - \sqrt { 11 } , 0 ) and corresponding directrix x=3611x = - \frac { 36 } { \sqrt { 11 } }

(Multiple Choice)
4.8/5
(41)
Showing 301 - 320 of 396
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)