Exam 12: Parametric Equations and Polar Coordinates

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the Cartesian coordinates of the given point. - (182,π4)\left( 18 \sqrt { 2 } , \frac { \pi } { 4 } \right)

(Multiple Choice)
4.9/5
(32)

Find the Cartesian coordinates of the given point. - (7,5π/6)( - 7,5 \pi / 6 )

(Multiple Choice)
4.8/5
(39)

Determine the symmetries of the curve. - r=34sinθr = - 3 - 4 \sin \theta

(Multiple Choice)
4.9/5
(34)

Graph the set of points whose polar coordinates satisfy the given equation or inequality. - πθ3π2,r=4\pi \leq \theta \leq \frac { 3 \pi } { 2 } , r = - 4  Graph the set of points whose polar coordinates satisfy the given equation or inequality. - \pi \leq \theta \leq \frac { 3 \pi } { 2 } , r = - 4

(Multiple Choice)
4.8/5
(36)

Assuming that the equations define x and y implicitly as differentiable functions x = f(t), y = g(t), find the slope of the curve x = f(t), y = g(t) at the given value of t. - 2tx+4t2=4,2yt2t=0,t=12 \mathrm { tx } + 4 \mathrm { t } ^ { 2 } = 4,2 \mathrm { y } - \mathrm { t } ^ { 2 } - \mathrm { t } = 0 , \mathrm { t } = 1

(Multiple Choice)
5.0/5
(39)

Graph the pair of parametric equations with the aid of a graphing calculator. - x=5tant,y=2sect;π/2tπ/2x=5 \tan t, y=2 \sec t ;-\pi / 2 \leq t \leq \pi / 2  Graph the pair of parametric equations with the aid of a graphing calculator. - x=5 \tan t, y=2 \sec t ;-\pi / 2 \leq t \leq \pi / 2

(Multiple Choice)
4.8/5
(34)

Find the slope of the polar curve at the indicated point. - r=1sinθ,θ=π2\mathrm { r } = 1 - \sin \theta , \theta = \frac { \pi } { 2 }

(Multiple Choice)
4.9/5
(34)

Graph the set of points whose polar coordinates satisfy the given equation or inequality. - r=3r = 3  Graph the set of points whose polar coordinates satisfy the given equation or inequality. - r = 3

(Multiple Choice)
4.8/5
(31)

Provide an appropriate response. -  Find the area of the region enclosed by the rose r=acosnθ for n=1,2,3,\text { Find the area of the region enclosed by the rose } r = a \cos n \theta \text { for } n = 1,2,3 , \ldots

(Essay)
5.0/5
(33)

Choose the equation that matches the graph. -Choose the equation that matches the graph. -

(Multiple Choice)
4.8/5
(35)

Find the directrices of the hyperbola. - 81x216y2=129681 x ^ { 2 } - 16 y ^ { 2 } = 1296

(Multiple Choice)
4.8/5
(42)

Graph. - 36y225x2=90036 y^{2}-25 x^{2}=900  Graph. - 36 y^{2}-25 x^{2}=900

(Multiple Choice)
4.9/5
(42)

Determine if the given polar coordinates represent the same point. - (5,π/3),(5,2π/3)( 5 , \pi / 3 ) , ( - 5 , - 2 \pi / 3 )

(True/False)
4.9/5
(27)

 Find the value of d2y/dx2 at the point defined by the given value of t\text { Find the value of } d ^ { 2 } y / d x ^ { 2 } \text { at the point defined by the given value of } t \text {. } - x=6t23,y=t3,t=1x = 6 t ^ { 2 } - 3 , y = t ^ { 3 } , t = 1

(Multiple Choice)
4.7/5
(37)

Solve the problem. -Find the point on the curve x=3sint,y=cost,π2tπ2x = 3 \sin t , y = \cos t , - \frac { \pi } { 2 } \leq t \leq \frac { \pi } { 2 } , closest to the point (43,0)\left( \frac { 4 } { 3 } , 0 \right) . (Hint: Minimize the square of the distance as a function of tt .)

(Multiple Choice)
4.9/5
(42)

Find the standard-form equation of the hyperbola centered at the origin which satisfies the given conditions. -Vertices at (2, 0) and (-2, 0); foci at (4, 0) and (-4, 0)

(Multiple Choice)
4.8/5
(36)

Find the coordinates of the centroid of the curve. -Find the coordinates of the centroid of the curve x=5cost+5tsint,y=5sint5tcost,0tπx = 5 \cos t + 5 t \sin t , y = 5 \sin t - 5 t \cos t , 0 \leq t \leq \pi .

(Multiple Choice)
4.8/5
(37)

 Find the polar coordinates, 0θ<2π and r0, of the point given in Cartesian coordinates. \text { Find the polar coordinates, } 0 \leq \theta < 2 \pi \text { and } r \geq 0 \text {, of the point given in Cartesian coordinates. } -(3, 3)

(Multiple Choice)
4.7/5
(46)

Find the standard-form equation of the hyperbola centered at the origin which satisfies the given conditions. -Foci at (0,5),(0,5)( 0 , - 5 ) , ( 0,5 ) ; asymptotes: y=43x,y=43xy = \frac { 4 } { 3 } x , y = - \frac { 4 } { 3 } x

(Multiple Choice)
4.8/5
(47)

Find the vertices and foci of the ellipse. - 36x2+100y2=360036 x ^ { 2 } + 100 y ^ { 2 } = 3600

(Multiple Choice)
4.8/5
(37)
Showing 21 - 40 of 396
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)