Exam 12: Parametric Equations and Polar Coordinates

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the standard-form equation of the ellipse centered at the origin and satisfying the given conditions. -An ellipse with vertices (±6,0)( \pm 6,0 ) and foci at (±5,0)( \pm 5,0 )

(Multiple Choice)
4.8/5
(42)

Provide an appropriate response. -Graph the equation r=1+acosθr = 1 + a \cos \theta for several values of a in order to get an idea of what these curves look like. (Try both a<1| \mathrm { a } | < 1 and a>1| \mathrm { a } | > 1 .) Show that the graph will have an inner loop for every a such that a>1| \mathrm { a } | > 1 and find the values of θ\theta that correspond to the inner loop.

(Essay)
4.9/5
(39)

The polar equation of a circle is given. Give polar coordinates for the center of the circle and identify its radius. - r=4cosθr = - 4 \cos \theta

(Multiple Choice)
4.9/5
(35)

 Find the polar coordinates, 0θ<2π and r0, of the point given in Cartesian coordinates. \text { Find the polar coordinates, } 0 \leq \theta < 2 \pi \text { and } r \geq 0 \text {, of the point given in Cartesian coordinates. } -(0, -2)

(Multiple Choice)
4.9/5
(32)

Find the eccentricity of the ellipse. - 4x2+y2=364 x ^ { 2 } + y ^ { 2 } = 36

(Multiple Choice)
4.9/5
(37)

Provide an appropriate response. -The area of the surface formed by revolving the graph of r=f(θ)r = f ( \theta ) from θ=α\theta = \alpha to θ=β\theta = \beta about the line θ=0\theta = 0 (the polar axis) is SA=αβ2πrsinθr2+(drdθ)2 dθ\mathrm { SA } = \int _ { \alpha } ^ { \beta } 2 \pi \mathrm { r } \sin \theta \sqrt { \mathrm { r } ^ { 2 } + \left( \frac { \mathrm { dr } } { \mathrm { d } \theta } \right) ^ { 2 } } \mathrm {~d} \theta . The area of the surface formed by revolving the graph of r=f(θ)\mathrm { r } = \mathrm { f } ( \theta ) from θ=α\theta = \alpha to θ=β\theta = \beta about the line θ=π2\theta = \frac { \pi } { 2 } is SA=αβ2πrcosθr2+(drdθ)2 dθ\mathrm { SA } = \int _ { \alpha } ^ { \beta } 2 \pi \mathrm { r } \cos \theta \sqrt { \mathrm { r } ^ { 2 } + \left( \frac { \mathrm { dr } } { \mathrm { d } \theta } \right) ^ { 2 } } \mathrm {~d} \theta . Use the idea underlying these two integral formulas to find the surface area of the torus formed by revolving the circle r=r = a about the line r=bsecθr = b \sec \theta where 0<a<b0 < a < b .

(Short Answer)
4.8/5
(43)

Graph the polar equation. - r=32+cosθr=-\frac{3}{2}+\cos \theta  Graph the polar equation. - r=-\frac{3}{2}+\cos \theta

(Multiple Choice)
4.7/5
(31)

Find an equation for the line tangent to the curve at the point defined by the given value of t. - x=sint,y=6sint,t=π3x = \sin t , y = 6 \sin t , t = \frac { \pi } { 3 }

(Multiple Choice)
4.8/5
(39)

The eccentricity is given of a conic section with one focus at the origin, along with the directrix corresponding to that focus. Find a polar equation for the conic section. - e=13,y=5e = \frac { 1 } { 3 } , y = 5

(Multiple Choice)
4.9/5
(41)

Find the eccentricity of the ellipse. - x2+2y2=6x ^ { 2 } + 2 y ^ { 2 } = 6

(Multiple Choice)
4.9/5
(38)

Replace the Cartesian equation with an equivalent polar equation. -xy = 1

(Multiple Choice)
4.8/5
(31)

Solve the problem. -Find the foci and asymptotes of the following hyperbola: x2225y2400=1\frac { x ^ { 2 } } { 225 } - \frac { y ^ { 2 } } { 400 } = 1

(Multiple Choice)
4.9/5
(35)

Graph the parabola or ellipse. Include the directrix that corresponds to the focus at the origin. - r=82cosθr = \frac { 8 } { 2 - \cos \theta }  Graph the parabola or ellipse. Include the directrix that corresponds to the focus at the origin. - r = \frac { 8 } { 2 - \cos \theta }

(Multiple Choice)
4.8/5
(37)

Solve the problem. -The hyperbola y2144x2256=1\frac { y ^ { 2 } } { 144 } - \frac { x ^ { 2 } } { 256 } = 1 is shifted horizontally and vertically to obtain the hyperbola (y2)2144(x3)2256=1\frac { ( y - 2 ) ^ { 2 } } { 144 } - \frac { ( x - 3 ) ^ { 2 } } { 256 } = 1 Find the asymptotes of the new hyperbola.

(Multiple Choice)
4.8/5
(42)

Find the slope of the polar curve at the indicated point. - r=6(1+cosθ),θ=π4r = 6 ( 1 + \cos \theta ) , \theta = \frac { \pi } { 4 }

(Multiple Choice)
4.9/5
(34)

Find the area of the specified region. -Shared by the cardioids r=4(1+sinθ)r = 4 ( 1 + \sin \theta ) and r=4(1sinθ)r = 4 ( 1 - \sin \theta )

(Multiple Choice)
4.9/5
(37)

Determine if the given polar coordinates represent the same point. - (1,π/6),(1,7π/6)( 1 , \pi / 6 ) , ( - 1,7 \pi / 6 )

(True/False)
4.8/5
(31)

If the equation represents a hyperbola, find the center, foci, and asymptotes. If the equation represents an ellipse, find the center, vertices, and foci. If the equation represents a circle, find the center and radius. If the equation represents a parabola, find the focus and directrix. - 6x2y272x+12y114=06 x ^ { 2 } - y ^ { 2 } - 72 x + 12 y - 114 = 0

(Multiple Choice)
5.0/5
(33)

Graph the polar equation. - r2=73sin4θr ^ { 2 } = 73 \sin 4 \theta  Graph the polar equation. - r ^ { 2 } = 73 \sin 4 \theta

(Multiple Choice)
4.9/5
(46)

Solve the problem. -Find the foci and asymptotes of the following hyperbola: 36x2y2=3636 x ^ { 2 } - y ^ { 2 } = 36

(Multiple Choice)
4.9/5
(44)
Showing 61 - 80 of 396
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)