Exam 12: Parametric Equations and Polar Coordinates

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the standard-form equation for an ellipse which satisfies the given conditions. -An ellipse centered at the origin having vertex at (0,9)( 0 , - 9 ) and eccentricity equal to 13\frac { 1 } { 3 }

(Multiple Choice)
4.7/5
(27)

Graph. - x2y2=8x ^ { 2 } - y ^ { 2 } = 8  Graph. - x ^ { 2 } - y ^ { 2 } = 8

(Multiple Choice)
4.9/5
(39)

Find the focus and directrix of the parabola. - y2=20xy ^ { 2 } = - 20 x

(Multiple Choice)
4.8/5
(39)

 Find a polar equation in the form rcos(θθ0)=r0 for the given line. \text { Find a polar equation in the form } r \cos \left( \theta - \theta _ { 0 } \right) = r _ { 0 } \text { for the given line. } - y=4y = - 4

(Multiple Choice)
5.0/5
(33)

Solve the problem. -The hyperbola x264y29=1\frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 9 } = 1 is shifted horizontally and vertically to obtain the hyperbola (x+2)264(y1)29=1\frac { ( x + 2 ) ^ { 2 } } { 64 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1 . Graph the new hyperbola.  Solve the problem. -The hyperbola  \frac { x ^ { 2 } } { 64 } - \frac { y ^ { 2 } } { 9 } = 1  is shifted horizontally and vertically to obtain the hyperbola  \frac { ( x + 2 ) ^ { 2 } } { 64 } - \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1 .    Graph the new hyperbola.

(Multiple Choice)
4.8/5
(35)

Determine the symmetries of the curve. - r2=3cos3θr ^ { 2 } = - 3 \cos 3 \theta

(Multiple Choice)
4.8/5
(33)

Find the eccentricity of the hyperbola. - x2y2=2x ^ { 2 } - y ^ { 2 } = 2

(Multiple Choice)
4.8/5
(34)

Replace the polar equation with an equivalent Cartesian equation. - r2=44rcosθr ^ { 2 } = 44 r \cos \theta

(Multiple Choice)
5.0/5
(38)

Find the length of the curve. -The spiral r=6θ,0θπr = 6 \theta , 0 \leq \theta \leq \pi

(Multiple Choice)
4.9/5
(36)

Graph the polar equation. - r=4sin2θr = 4 \sin 2 \theta  Graph the polar equation. - r = 4 \sin 2 \theta

(Multiple Choice)
4.9/5
(42)

Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=4t2,y=2t,xtx=4 t^{2}, y=2 t, x \leq t \leq \infty  Parametric equations and and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. - x=4 t^{2}, y=2 t, x \leq t \leq \infty

(Multiple Choice)
4.8/5
(39)

Find the standard-form equation of the ellipse centered at the origin and satisfying the given conditions. -An ellipse with vertices (0,±9)( 0 , \pm 9 ) and foci at (0,±23)( 0 , \pm 2 \sqrt { 3 } ) .

(Multiple Choice)
4.8/5
(37)

Determine if the given polar coordinates represent the same point. - (4,π/2),(4,3π/2)( 4 , \pi / 2 ) , ( - 4,3 \pi / 2 )

(True/False)
4.9/5
(25)

Find the foci of the hyperbola. - x2y2=50x ^ { 2 } - y ^ { 2 } = 50

(Multiple Choice)
4.9/5
(36)

 Find a polar equation in the form rcos(θθ0)=r0 for the given line. \text { Find a polar equation in the form } r \cos \left( \theta - \theta _ { 0 } \right) = r _ { 0 } \text { for the given line. } - x3y=4x - \sqrt { 3 } y = 4

(Multiple Choice)
4.8/5
(39)

 Find the polar coordinates, 0θ<2π and r0, of the point given in Cartesian coordinates. \text { Find the polar coordinates, } 0 \leq \theta < 2 \pi \text { and } r \geq 0 \text {, of the point given in Cartesian coordinates. } - (0,15)\left( 0 , \frac { 1 } { 5 } \right)

(Multiple Choice)
4.9/5
(34)

Find the slope of the polar curve at the indicated point. - r=cscθ,θ=π6r = \csc \theta , \theta = \frac { \pi } { 6 }

(Multiple Choice)
4.8/5
(41)

 Find a polar equation in the form rcos(θθ0)=r0 for the given line. \text { Find a polar equation in the form } r \cos \left( \theta - \theta _ { 0 } \right) = r _ { 0 } \text { for the given line. } - 2x2y=10\sqrt { 2 } x - \sqrt { 2 } y = 10

(Multiple Choice)
4.8/5
(35)

The polar equation of a circle is given. Give polar coordinates for the center of the circle and identify its radius. - r=10sinθ\mathrm { r } = - 10 \sin \theta

(Multiple Choice)
4.9/5
(32)

Replace the Cartesian equation with an equivalent polar equation. - x2+y24x=0x ^ { 2 } + y ^ { 2 } - 4 x = 0

(Multiple Choice)
4.8/5
(41)
Showing 181 - 200 of 396
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)