Exam 12: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the triple integral ErdV\iiint _ { E } r d V in cylindrical coordinates, where E={(r,θ,z)0r1,0θ2π,0z1}E = \{ ( r , \theta , z ) \mid 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi , 0 \leq z \leq 1 \} .

(Multiple Choice)
4.8/5
(40)

The centroid (x, y, z) of a region E in R3\mathbb { R } ^ { 3 } is the center of mass with the density function σ(x,y,z)=1\sigma ( x , y , z ) = 1 . Find the centroid of the tetrahedron bounded by the coordinate planes and the plane x + y + z = 1.

(Short Answer)
4.7/5
(37)

Show that the surface areas for the functions f(x,y)=2x2+2y2f ( x , y ) = 2 x ^ { 2 } + 2 y ^ { 2 } and g(x,y)=4xyg ( x , y ) = 4 x y over the disk D={(x,y)x2+y21}D = \left\{ ( x , y ) \mid x ^ { 2 } + y ^ { 2 } \leq 1 \right\} are equal.

(Essay)
4.9/5
(33)

Evaluate the iterated integral 0202yy21x2+y2dxdy\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 2 y - y ^ { 2 } } } \frac { 1 } { \sqrt { x ^ { 2 } + y ^ { 2 } } } d x d y by converting to polar coordinates.

(Multiple Choice)
4.9/5
(32)

Suppose X and Y are random variables whose density function is given by f(x,y)={0.2e(05x+0.4y) if x0,y00 otherwise f ( x , y ) = \left\{ \begin{array} { c l } 0.2 e ^ { - ( 05 x + 0.4 y ) } & \text { if } x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. . Find the expected value of X.

(Short Answer)
4.7/5
(20)

Evaluate R4x2dA\iint _ { R } \sqrt { 4 - x ^ { 2 } } d A where R=[2,2]×[0,3]R = [ - 2,2 ] \times [ 0,3 ] by first identifying it as the volume of a solid.

(Short Answer)
4.8/5
(35)

Compute 0211yey21+x2dxdy\int _ { 0 } ^ { 2 } \int _ { - 1 } ^ { 1 } \frac { y e ^ { y ^ { 2 } } } { 1 + x ^ { 2 } } d x d y ..

(Essay)
4.9/5
(35)

Find the area of the surface with vector equation r (u,v)={ucosv,usinv,u2}( u , v ) = \left\{ u \cos v , u \sin v , u ^ { 2 } \right\} , 0u20 \leq u \leq 2 , 0v2π0 \leq v \leq 2 \pi .

(Essay)
4.7/5
(40)

Describe the image R of the set S={(u,v)0u1,0v1}S = \{ ( u , v ) \mid 0 \leq u \leq 1,0 \leq v \leq 1 \} under the transformation x=3u+vx = 3 u + v , y=u+2vy = u + 2 v , and then compute R(xy+y2)dA\iint _ { R } \left( x y + y ^ { 2 } \right) d A .

(Essay)
4.7/5
(34)

Evaluate the double integral of yey4y e ^ { y ^ { 4 } } over the region bounded by y=xy = \sqrt { x } , y = 2, and x = 0.

(Essay)
4.9/5
(30)
Showing 261 - 270 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)