Exam 12: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the triple integral E(x2+y2+z2)dV\iiint _ { E } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) d V in spherical coordinates, where E is the solid in the first octant bounded by the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 and the coordinate planes.

(Multiple Choice)
4.9/5
(33)

Rewrite Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral with x as the variable of integration in the outer integral, where R is the region shown below.  Rewrite  \iint _ { R } f ( x , y ) d A  as an iterated integral with x as the variable of integration in the outer integral, where R is the region shown below.

(Essay)
4.9/5
(36)

Evaluate the double integral RxdA\iint _ { R } x d A , where R={(x,y)y1x1y2,0y1}R = \left\{ ( x , y ) \mid y - 1 \leq x \leq \sqrt { 1 - y ^ { 2 } } , 0 \leq y \leq 1 \right\} .

(Multiple Choice)
4.9/5
(34)

Rewrite the integral 01x3xxdydx\int _ { 0 } ^ { 1 } \int _ { x } ^ { \sqrt { 3 } x } x d y d x in terms of polar coordinates, then evaluate the integral.

(Essay)
4.8/5
(34)

Evaluate the triple integral E1dV\iiint _ { E } 1 d V in cylindrical coordinates, where E={(r,θ,z)0r1,0θπ,0z1}E = \{ ( r , \theta , z ) \mid 0 \leq r \leq 1,0 \leq \theta \leq \pi , 0 \leq z \leq 1 \} .

(Multiple Choice)
4.7/5
(36)

Use the change of variables x = 2u + 3v, y = 3u - 2v to evaluate R(x+y)dA\iint _ { R } ( x + y ) d A , where R is the square with vertices (0, 0), (2, 3), (5, 1), and (3, -2).

(Short Answer)
4.9/5
(30)

Find the volume of the solid bounded by the paraboloid z=103x23y2z = 10 - 3 x ^ { 2 } - 3 y ^ { 2 } and the plane z=4z = 4 .

(Multiple Choice)
4.9/5
(32)

Compute the Jacobian of the transformation T given by x=12(uv)x = \frac { 1 } { \sqrt { 2 } } ( u - v ) , y=12(u+v)y = \frac { 1 } { \sqrt { 2 } } ( u + v ) , and find the image of S={(u,v)0u1,0v1}S = \{ ( u , v ) \mid 0 \leq u \leq 1,0 \leq v \leq 1 \} under T.

(Essay)
4.9/5
(34)

A greenhouse is shown below. It is 10 ft wide and 20 ft long and has a at roof that is 12 ft high at one corner and 10 ft high at each of the adjacent corners. Find the volume of the greenhouse. A greenhouse is shown below. It is 10 ft wide and 20 ft long and has a at roof that is 12 ft high at one corner and 10 ft high at each of the adjacent corners. Find the volume of the greenhouse.

(Short Answer)
4.9/5
(21)

Evaluate the triple integral E(x2+y2+z2)dV\iiint _ { E } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) d V , where E={(x,y,z)x2+y2+z21}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 1 \right\} .

(Multiple Choice)
4.9/5
(42)

(a) Sketch the solid whose volume is given by the iterated integral 22x2404ydzdydx\int _ { - 2 } ^ { 2 } \int _ { x ^ { 2 } } ^ { 4 } \int _ { 0 } ^ { 4 - y } d z d y d x .(b) Rewrite the integral in part (a) as an equivalent iterated integral (or integrals) in the order dx, dz, dy.(c) Rewrite the integral in part (a) as an equivalent iterated integral (or integrals) in the order dy, dz, dx.

(Essay)
5.0/5
(37)

Let E be the solid under z=1y2z = 1 - y ^ { 2 } and above the region in the xy-plane bounded by x + y = 1 and x + y = 2. Sketch the solid, then express the volume of E as an iterated integral in rectangular coordinates.

(Essay)
4.9/5
(41)

Find Sx2ydV\iiint _ { S } x ^ { 2 } y d V , where S is the solid bounded by the cylinder y=x2y = x ^ { 2 } and the planes z = 0, y = 1, and z = y.

(Short Answer)
4.8/5
(33)

Find the area of the part of the plane x +y + z = 6 that lies above the square with vertices (0, 0), (1, 0), (0, 1), and (1, 1).

(Multiple Choice)
4.9/5
(34)

Change the order of integration in the following integral and evaluate: 09y3sin(πx3)dxdy\int _ { 0 } ^ { 9 } \int _ { \sqrt { y } } ^ { 3 } \sin \left( \pi x ^ { 3 } \right) d x d y .

(Essay)
4.7/5
(28)

Give an example of a non-constant function f(x, y) such that the average value of f over R={(x,y)1x1,1y1}R = \{ ( x , y ) \mid - 1 \leq x \leq 1 , - 1 \leq y \leq 1 \} is 0.

(Essay)
4.8/5
(24)

Calculate the double Riemann sum of f for the partition of R given by the indicated lines and the given choice of (xij,yij)\left( x _ { i j } ^ { * } , y _ { i j } ^ { * } \right) . f(x,y)=2x+x2yf ( x , y ) = 2 x + x ^ { 2 } y , R={(x,y)2x2,1y1}R = \{ ( x , y ) \mid - 2 \leq x \leq 2 , - 1 \leq y \leq 1 \} , x=1x = - 1 , x=0x = 0 , x=1x = 1 , y=12y = - \frac { 1 } { 2 } , y=0y = 0 , y=12y = \frac { 1 } { 2 } ; (xij,yij)\left( x _ { i j } ^ { * } , y _ { i j } ^ { * } \right) = lower left corner of Rij.

(Short Answer)
4.8/5
(37)

Calculate the iterated integral 0In30In7exydxdy\int _ { 0 } ^ { \operatorname { In3 } } \int _ { 0 } ^ { \mathrm { In } 7 } e ^ { x - y } d x d y .

(Short Answer)
4.8/5
(36)

Find the Jacobian of the transformation x=usinvx = u \sin v , y=ucosvy = u \cos v .

(Multiple Choice)
4.7/5
(30)

Let E be the solid under the paraboloid z=16x2y2z = 16 - x ^ { 2 } - y ^ { 2 } , above the xy-plane, and between the planes x = 2 and x = 3. Express the volume of E as an iterated integral in rectangular coordinates.

(Short Answer)
4.8/5
(35)
Showing 221 - 240 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)