Exam 12: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the volume bounded above by the surface z=x2y2z = x ^ { 2 } - y ^ { 2 } , x0x \geq 0 , below by the xy-plane, and laterally by the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 .

(Short Answer)
4.8/5
(33)

Under the transformation x = u + v, y = v - 2u, the image of the circle x2+y21x ^ { 2 } + y ^ { 2 } \leq 1 is an ellipse. What is the area of that ellipse?

(Multiple Choice)
4.8/5
(36)

Evaluate the iterated integral 010yey2dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { y } e ^ { y ^ { 2 } } d x d y .

(Multiple Choice)
4.9/5
(34)

Evaluate the iterated integral 0π/20π/201ρ2sinϕdρdϕdθ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 1 } \rho ^ { 2 } \sin \phi d \rho d \phi d \theta .

(Multiple Choice)
4.9/5
(29)

Find the Jacobian of the transformation x=u2x = u ^ { 2 } , y=v3y = v ^ { 3 } , when u=12u = \frac { 1 } { 2 } and v = 1.

(Multiple Choice)
4.7/5
(23)

Evaluate 2204x29x2y2dydx\int _ { - 2 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \sqrt { 9 - x ^ { 2 } - y ^ { 2 } } d y d x

(Essay)
5.0/5
(30)

Give good estimates of lower and upper bounds for 1202xyx2+y2dxdy\int _ { 1 } ^ { 2 } \int _ { 0 } ^ { 2 } x y \sqrt { x ^ { 2 } + y ^ { 2 } } d x d y .

(Essay)
4.8/5
(37)

Find the mass of the lamina that occupies the region D={(x,y)0x1,0y1}D = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 1 \} and has density function p(x, y) = xy.

(Multiple Choice)
5.0/5
(46)

Use the change of variables x=aux = a u , y=bvy = b v , z=cwz = c w to evaluate EydV\iiint _ { E } y d V , where E is the solid enclosed by the ellipsoid x2a2+y2b2+z2c2=1\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } + \frac { z ^ { 2 } } { c ^ { 2 } } = 1 .

(Short Answer)
4.8/5
(42)

A phonograph turntable is made in the shape of a circular disk of radius 6 inches with density function p(x,y)=x2+y2p ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } . Find the polar moment of inertia I0I _ { 0 } of the disk.

(Multiple Choice)
4.8/5
(32)

Show that the average value of f(x,y)=ax+byf ( x , y ) = a x + b y over R={(x,y)1x1,1y1}R = \{ ( x , y ) \mid - 1 \leq x \leq 1 , - 1 \leq y \leq 1 \} is 0 for all values of a and b.

(Essay)
5.0/5
(26)

Compute the Riemann sum for the double integral Rx+2ydA\iint _ { R } x + 2 y d A where R=[0,6]×[0,2]R = [ 0,6 ] \times [ 0,2 ] for the given grid and choice of sample points.  Compute the Riemann sum for the double integral  \iint _ { R } x + 2 y d A  where  R = [ 0,6 ] \times [ 0,2 ]  for the given grid and choice of sample points.

(Short Answer)
4.9/5
(34)

(a) Sketch the solid whose volume is given by the iterated integral 0202y04y2dxdzdy\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 2 - y } \int _ { 0 } ^ { 4 - y ^ { 2 } } d x d z d y .(b) Rewrite the integral in part (a) as an equivalent iterated integral (or integrals) in the order dz, dx, dy.(c) Rewrite the integral in part (a) as an equivalent iterated integral (or integrals) in the order dy, dx, dz.

(Essay)
4.7/5
(36)

Use the change of variables u = 2x - y, v = x + y to evaluate R(6x3y)dA\iint _ { R } ( 6 x - 3 y ) d A where R is the region bounded by 2x - y = 1, 2x - y = 3, x + y = 1, and x + y = 2.

(Short Answer)
4.9/5
(38)

Evaluate 0202π0xzxyz2dydxdz\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { x z } x y z ^ { 2 } d y d x d z .

(Short Answer)
4.8/5
(35)

Evaluate the iterated integral 01x1cos(y2)dydx\int _ { 0 } ^ { 1 } \int _ { x } ^ { 1 } \cos \left( y ^ { 2 } \right) d y d x .

(Multiple Choice)
4.9/5
(38)

Find the centroid of D={(x,y)x2a2+y2b21,y0}D = \left\{ ( x , y ) \mid \frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } \leq 1 , y \geq 0 \right\} , the region enclosed by the upper half of the ellipse x2a2+y2b2=1\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 .

(Short Answer)
4.9/5
(35)

Evaluate the double integral R(x+2y)dA\iint _ { R } ( x + 2 y ) d A , where R={(x,y)0x1,0yx}R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq x \} .

(Multiple Choice)
4.7/5
(24)

The region D in R2\mathbb { R } ^ { 2 } shown below is bounded by x = 1, y=exy = e ^ { x } , and y=1x2y = 1 - x ^ { 2 } .  The region D in  \mathbb { R } ^ { 2 }  shown below is bounded by x = 1,  y = e ^ { x }  , and  y = 1 - x ^ { 2 }  .   (a) Compute  \iint _ { R } x d A  by finding  \int _ { 0 } ^ { 1 } \int _ { 1 - x ^ { 2 } } ^ { e ^ { x } } x d y d x  .(b) Write down the integral or integrals needed to compute  \iint _ { R } x d A  with the order of integration reversed. (a) Compute RxdA\iint _ { R } x d A by finding 011x2exxdydx\int _ { 0 } ^ { 1 } \int _ { 1 - x ^ { 2 } } ^ { e ^ { x } } x d y d x .(b) Write down the integral or integrals needed to compute RxdA\iint _ { R } x d A with the order of integration reversed.

(Essay)
4.9/5
(39)

Calculate the iterated integral 120n/2ysin(xy)dydx\int _ { 1 } ^ { 2 } \int _ { 0 } ^ { n / 2 } y \sin ( x y ) d y d x .

(Short Answer)
4.9/5
(32)
Showing 61 - 80 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)