Exam 12: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Let f(x,y)=x2yf ( x , y ) = x ^ { 2 } y , and let R={(x,y)0x1,0y1}R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 1 \} . Let R be its own partition, and let (x1,y1)\left( x _ { 1 } ^ { * } , y _ { 1 } ^ { * } \right) be the center of R. Calculate the double Riemann sum of f.

(Multiple Choice)
4.9/5
(36)

Find the Jacobian of the transformation x=setx = s e ^ { t } , y=sety = s e ^ { - t } .

(Short Answer)
5.0/5
(26)

Find the volume of the region above the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and below the hemisphere z9=9x2y2z - 9 = \sqrt { 9 - x ^ { 2 } - y ^ { 2 } } .

(Short Answer)
4.9/5
(34)

Evaluate the double integral RxydA\iint _ { R } x y d A , where R={(x,y)0xy,0y2}R = \{ ( x , y ) \mid 0 \leq x \leq y , 0 \leq y \leq 2 \} .

(Multiple Choice)
4.9/5
(32)

Compute 0101xy2exy3dxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } x y ^ { 2 } e ^ { x y ^ { 3 } } d x d y ..

(Essay)
4.7/5
(37)

Evaluate the iterated integral 020x2(x+3y)dydx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { x ^ { 2 } } ( x + 3 \sqrt { y } ) d y d x .

(Multiple Choice)
4.7/5
(34)

Use the Midpoint Rule to estimate R(x2+y2)dA\iint _ { R } \left( x ^ { 2 } + y ^ { 2 } \right) d A over R={(x,y)0x2,0y2}R = \{ ( x , y ) \mid 0 \leq x \leq 2,0 \leq y \leq 2 \} partitioned by the lines x = 1 and y = 1. Then estimate the average value of f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } over R.

(Essay)
4.9/5
(29)

Suppose X and Y are random variables. Find k such that the function f(x,y)={0.2e(05x+) if x0,y00 otherwise f ( x , y ) = \left\{ \begin{array} { c l } 0.2 e ^ { - ( 05 x + \not y ) } & \text { if } x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. is a joint density function.

(Multiple Choice)
4.7/5
(29)

Let T be the transformation given by x = 2u + v, y = u + 2v.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.  Let T be the transformation given by x = 2u + v, y = u + 2v.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation  T ^ { - 1 }  .(c) Evaluate the double integral  \iint _ { R } ( - x + 2 y ) ^ { 2 } \cos ( 2 x - y ) d A  . (b) Find the inverse transformation T1T ^ { - 1 } .(c) Evaluate the double integral R(x+2y)2cos(2xy)dA\iint _ { R } ( - x + 2 y ) ^ { 2 } \cos ( 2 x - y ) d A .

(Essay)
4.7/5
(30)

Compute the Riemann sum for the double integral Rx+2ydA\iint _ { R } x + 2 y d A where R=[0,6]×[0,2]R = [ 0,6 ] \times [ 0,2 ] for the given grid and choice of sample points.  Compute the Riemann sum for the double integral  \iint _ { R } x + 2 y d A  where  R = [ 0,6 ] \times [ 0,2 ]  for the given grid and choice of sample points.

(Short Answer)
4.9/5
(36)

Sketch the solid whose volume is given by the triple integral 0101x202x2y2dzdydx\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { 0 } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x .

(Essay)
4.8/5
(33)

Evaluate R9y2dA\iint _ { R } \sqrt { 9 - y ^ { 2 } } d A where R=[2,2]×[0,3]R = [ - 2,2 ] \times [ 0,3 ] by first identifying it as the volume of a solid.

(Short Answer)
4.7/5
(39)

Rewrite Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral with y as the variable of integration in the outer integral, where R is the region shown below.  Rewrite  \iint _ { R } f ( x , y ) d A  as an iterated integral with y as the variable of integration in the outer integral, where R is the region shown below.

(Essay)
4.8/5
(37)

Evaluate the integral Rx2+9y2dA\iint _ { R } \sqrt { x ^ { 2 } + 9 y ^ { 2 } } d A , where R is the region enclosed by the ellipse x29+y2=1\frac { x ^ { 2 } } { 9 } + y ^ { 2 } = 1 .

(Multiple Choice)
4.7/5
(28)

Let E be the solid that lies below the sphere x2+y2+z2=a2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = a ^ { 2 } and above the cone ϕ=β\phi = \beta , where 0<β<π20 < \beta < \frac { \pi } { 2 } . Find the value of the triple integral EzdV\iiint _ { E } z d V .

(Multiple Choice)
4.9/5
(27)

Find the surface area of the part of the cone z=(x2+y2)1/2z = \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 1 / 2 } lying inside the cylinder x22x+y2=0x ^ { 2 } - 2 x + y ^ { 2 } = 0 .

(Short Answer)
4.9/5
(31)

Compute the Jacobian of the transformation T given by x=2u12vx = \sqrt { 2 } u - \frac { 1 } { \sqrt { 2 } } v , y=12u+2vy = \frac { 1 } { \sqrt { 2 } } u + \sqrt { 2 } v . Compute the area of the image of S={(u,v)0u1,0v1}S = \{ ( u , v ) \mid 0 \leq u \leq 1,0 \leq v \leq 1 \} and compare it to the area of S.

(Essay)
4.8/5
(36)

Describe the region sketched below both as a type I and as a type II region. Describe the region sketched below both as a type I and as a type II region.

(Essay)
4.7/5
(33)

Find the surface area for the part of the plane 5z=3x4y5 z = 3 x - 4 y that lies inside the elliptic cylinder x2+2y2=2x ^ { 2 } + 2 y ^ { 2 } = 2 .

(Short Answer)
4.9/5
(34)

Evaluate 024x24x204x2y2z2x2+y2+z2dzdydx\int _ { 0 } ^ { 2 } \int _ { - \sqrt { 4 - x ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } z ^ { 2 } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d z d y d x by changing to spherical coordinates.

(Essay)
4.8/5
(44)
Showing 81 - 100 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)