Exam 12: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the double integral Ry(x+1)2dA\iint _ { R } \frac { y } { ( x + 1 ) ^ { 2 } } d A , where R={(x,y)0x1,0y1}R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 1 \} .

(Multiple Choice)
4.8/5
(36)

Evaluate the iterated integral 0101x2ydxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } x ^ { 2 } y d x d y .

(Multiple Choice)
4.7/5
(40)

Find the mass of the solid that occupies the region E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} and has density function ρ(x,y,z)=x\rho ( x , y , z ) = x .

(Multiple Choice)
4.9/5
(34)

Let f(x,y)=xyf ( x , y ) = x y , and let R={(x,y)0x1,0y1}R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 1 \} . Let R be partitioned into four subrectangles by the lines x=12x = \frac { 1 } { 2 } and y=12y = \frac { 1 } { 2 } , and let (xi,yj)\left( x _ { i } ^ { * } , y _ { j } ^ { * } \right) be the upper left corner of Rij. Calculate the double Riemann sum of f.

(Multiple Choice)
4.9/5
(35)

Evaluate the iterated integral 0x/2yx/20xycos(zy)dzdxdy\int _ { 0 } ^ { x / 2 } \int _ { y } ^ { x / 2 } \int _ { 0 } ^ { x y } \cos \left( \frac { z } { y } \right) d z d x d y .

(Short Answer)
4.7/5
(39)

Find the Jacobian of the transformation x=rcosθx = r \cos \theta , y=rsinθy = r \sin \theta , z = z.

(Multiple Choice)
4.7/5
(44)

Use a triple integral in spherical coordinates to find the volume of that part of the sphere x2+y2+z2=9x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 9 which lies inside the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } .

(Essay)
4.8/5
(31)

Find the area of the portion of the surface z=x2+y2z = x ^ { 2 } + y ^ { 2 } inside the cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 .

(Essay)
4.9/5
(41)

Evaluate R1xdA\iint _ { R } \frac { 1 } { x } d A , where R is the region bounded by the curves x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 , y=xy = x , x=2x = 2 , and y=0y = 0 .

(Essay)
4.8/5
(26)

Evaluate the iterated integral 110201x2+y2+z2dxdydz\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 1 } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } d x d y d z .

(Multiple Choice)
4.8/5
(33)

Evaluate the iterated integral 0x0cosyxsinydxdy\int _ { 0 } ^ { x } \int _ { 0 } ^ { \cos y } x \sin y d x d y .

(Multiple Choice)
4.8/5
(33)

Find the mass of that portion of the solid bounded above by the sphere x2+y2+z2=3x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 3 which lies in the first octant, if the density varies as the distance from the center of the sphere.

(Short Answer)
4.9/5
(33)

Find the moment of inertia IxI _ { x } of the lamina that occupies the region D={(x,y)0x1,0y1}D = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 1 \} and has density function p(x,y)=xp ( x , y ) = x .

(Multiple Choice)
4.8/5
(24)

Find the volume of the region inside the cylinder x2+y2=7x ^ { 2 } + y ^ { 2 } = 7 which is bounded below by the xy-plane and above by the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 .

(Short Answer)
4.8/5
(38)

Find the Jacobian of the transformation x = u sin v, y = u cos v when u = 3 and v = 5.

(Multiple Choice)
4.8/5
(38)

Find the Jacobian of the transformation x=ρsinϕcosθx = \rho \sin \phi \cos \theta , y=ρsinϕsinθy = \rho \sin \phi \sin \theta , z=ρcosϕz = \rho \cos \phi .

(Multiple Choice)
4.9/5
(34)

Find the area of the surface with vector equation r (u,v)=u+2v,u2v,u2+2v2( u , v ) = \left\langle u + 2 v , u - 2 v , u ^ { 2 } + 2 v ^ { 2 } \right\rangle , u2+v24u ^ { 2 } + v ^ { 2 } \leq 4 .

(Short Answer)
4.8/5
(39)

Find the polar moment of inertia I0I _ { 0 } of the lamina that occupies the region D={(x,y)0x1,0y1}D = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 1 \} and has density function p(x,y)=1p ( x , y ) = 1 .

(Multiple Choice)
4.9/5
(37)

Find the center of mass of D={(x,y)x2+y24,x0,y0}D = \left\{ ( x , y ) \mid x ^ { 2 } + y ^ { 2 } \leq 4 , x \geq 0 , y \geq 0 \right\} if p(x,y)=x2+y2p ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } .

(Short Answer)
4.8/5
(37)

Find the mass of a solid ball of radius 2 if the density at each point (x, y, z) is 31+x2+y2+z2\frac { 3 } { 1 + \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } } .

(Short Answer)
4.7/5
(33)
Showing 141 - 160 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)