Exam 12: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the Jacobian of the transformation x=u2x = u ^ { 2 } , y=v3y = v ^ { 3 } .

(Multiple Choice)
4.9/5
(32)

Find 02f(x,y)dy\int _ { 0 } ^ { 2 } f ( x , y ) d y and 01f(x,y)dx\int _ { 0 } ^ { 1 } f ( x , y ) d x for f(x,y)=2xy3x2f ( x , y ) = 2 x y - 3 x ^ { 2 } .

(Essay)
4.9/5
(34)

A solid is bounded above by the paraboloid z=1x2y2z = 1 - x ^ { 2 } - y ^ { 2 } and below by the xy-plane. Compute the volume of this solid using polar coordinates.

(Essay)
4.8/5
(35)

Use a double integral to find the area of the region enclosed by one loop of the curve r=cos2θr = \cos 2 \theta .

(Multiple Choice)
4.8/5
(32)

The average value of f(x, y) over a region D in the plane with area A(D) is 1A(D)Df(x,y)dA\frac { 1 } { A ( D ) } \iint _ { D } f ( x , y ) d A . Find the average value of f(x, y) = xy over the region D={(x,y)x2+y21,xy0}D = \left\{ ( x , y ) \mid x ^ { 2 } + y ^ { 2 } \leq 1 , x y \geq 0 \right\} .

(Short Answer)
4.8/5
(34)

Calculate the double Riemann sum of f for the partition of R given by the indicated lines and the given choice of (xij,yij)\left( x _ { i j } ^ { * } , y _ { i j } ^ { * } \right) . f(x,y)=x2+4yf ( x , y ) = x ^ { 2 } + 4 y , R={(x,y)0x2,0y3}R = \{ ( x , y ) \mid 0 \leq x \leq 2,0 \leq y \leq 3 \} , x = 1, y = 1, y = 2; (xij,yij)\left( x _ { i j } ^ { * } , y _ { i j } ^ { * } \right) = center of Rij.

(Short Answer)
4.9/5
(41)

Evaluate Ez(x2+y2)dV\iiint _ { E } z \left( x ^ { 2 } + y ^ { 2 } \right) d V , where E is the solid bounded by the cylinder x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 , above by z = 3 and below by z = 0.

(Short Answer)
4.9/5
(34)

Write Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral in polar coordinates, where R is the region shown below.  Write  \iint _ { R } f ( x , y ) d A  as an iterated integral in polar coordinates, where R is the region shown below.

(Essay)
4.7/5
(38)

Evaluate the iterated integral 010ydxdy\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { y } d x d y .

(Multiple Choice)
4.9/5
(42)

Evaluate the iterated integral 020x20Inxxeydydzdx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { x ^ { 2 } } \int _ { 0 } ^ { \mathrm { In } x } x e ^ { y } d y d z d x .

(Short Answer)
4.8/5
(38)

A region W in R3\mathbb { R } ^ { 3 } is described completely by x0x \geq 0 , y0y \geq 0 , z0z \geq 0 , and x2+y2+z24x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 4 .(a) Describe or sketch this region.  A region W in  \mathbb { R } ^ { 3 }  is described completely by  x \geq 0  ,  y \geq 0  ,  z \geq 0  , and  x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 4  .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral. (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral.

(Essay)
4.9/5
(29)

Compute the Riemann sum for the double integral Rx+2ydA\iint _ { R } x + 2 y d A where R=[0,6]×[0,2]R = [ 0,6 ] \times [ 0,2 ] for the given grid and choice of sample points.  Compute the Riemann sum for the double integral  \iint _ { R } x + 2 y d A  where  R = [ 0,6 ] \times [ 0,2 ]  for the given grid and choice of sample points.

(Short Answer)
4.9/5
(42)

Evaluate 01x2103y(y+2x2z)dzdydx\int _ { 0 } ^ { 1 } \int _ { x ^ { 2 } } ^ { 1 } \int _ { 0 } ^ { 3 y } \left( y + 2 x ^ { 2 } z \right) d z d y d x .

(Short Answer)
4.9/5
(36)

Let T be the transformation given by x = 2u + v, y = 3u.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.  Let T be the transformation given by x = 2u + v, y = 3u.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation  T ^ { - 1 }  .(c) Evaluate the double integral  \iint _ { R } e ^ { y / ( 3 x - 2 y ) } d A  . (b) Find the inverse transformation T1T ^ { - 1 } .(c) Evaluate the double integral Rey/(3x2y)dA\iint _ { R } e ^ { y / ( 3 x - 2 y ) } d A .

(Essay)
4.9/5
(30)

Find the volume under the paraboloid z=4x2+y2z = 4 x ^ { 2 } + y ^ { 2 } above the triangle with vertices (0, 0, 0), (3, 0, 0), and (3, 1, 0).

(Multiple Choice)
4.8/5
(32)

Sketch the solid whose volume is given by the iterated integral 0203(5xy)dydx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 3 } ( 5 - x - y ) d y d x .

(Essay)
4.9/5
(27)

Find the area of that part of the plane 2x+3yz+1=02 x + 3 y - z + 1 = 0 that lies above the rectangle [1, 4] ×\times [2, 4].

(Short Answer)
4.8/5
(45)

Find the area inside the circle r=2cosθr = 2 \cos \theta and outside the circle r = 1.

(Essay)
4.9/5
(31)

A phonograph turntable is made in the shape of a circular disk of radius 6 inches with density function p(x,y)=x2+y2p ( x , y ) = \sqrt { x ^ { 2 } + y ^ { 2 } } . Find the mass of the disk.

(Multiple Choice)
4.8/5
(35)

Write Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral in polar coordinates, where R is the region shown below.  Write  \iint _ { R } f ( x , y ) d A  as an iterated integral in polar coordinates, where R is the region shown below.

(Essay)
4.8/5
(38)
Showing 181 - 200 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)