Exam 12: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the moment of inertia IxI _ { x } about the x-axis and the moment of inertia IyI _ { y } about the y-axis for the region in the first quadrant bounded by y = x and y2=x3y ^ { 2 } = x ^ { 3 } , assuming p = 1.

(Essay)
4.9/5
(34)

Find the y-coordinate of the centroid of the semiannular plane region given by 1x2+y241 \leq x ^ { 2 } + y ^ { 2 } \leq 4 , y0y \geq 0 . Sketch the plane region and plot the centroid in the graph.

(Essay)
4.8/5
(39)

Use cylindrical coordinates to find EzdV\iiint _ { E } z d V , where R is the region bounded by z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } and z=x2+y2z = x ^ { 2 } + y ^ { 2 } .

(Essay)
4.9/5
(31)

Evaluate Ez2dV\iiint _ { E } z ^ { 2 } d V , where E is the solid bounded by the ellipsoid x29+y225+z2=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 25 } + z ^ { 2 } = 1 .

(Short Answer)
4.9/5
(36)

Find the volume of the solid in the first octant that is bounded by the plane y + z = 4, the cylinder y=x2y = x ^ { 2 } , and the xy- and yz-planes.

(Short Answer)
4.8/5
(31)

Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane. Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.

(Short Answer)
4.8/5
(33)

Give a geometric description of the solid S whose volume in spherical coordinates is given by V=02xx/4x/202ρ2sinϕdρdϕdθV = \int _ { 0 } ^ { 2 x } \int _ { x / 4 } ^ { x / 2 } \int _ { 0 } ^ { 2 } \rho ^ { 2 } \sin \phi d \rho d \phi d \theta .

(Essay)
4.7/5
(29)

Evaluate the triple integral EydV\iiint _ { E } y d V , where E is the solid bounded by the coordinate planes and the plane 2x + y + z = 4.

(Multiple Choice)
4.8/5
(38)

Evaluate Rsin(9x2+4y2)dA\iint _ { R } \sin \left( 9 x ^ { 2 } + 4 y ^ { 2 } \right) d A by making an appropriate change of variables, where R is the region in the first quadrant bounded by the ellipse 9x2+4y2=19 x ^ { 2 } + 4 y ^ { 2 } = 1 .

(Essay)
4.9/5
(31)

Evaluate the double integral RxdA\iint _ { R } x d A , where R={(x,y)0x2,12xy3x}R = \left\{ ( x , y ) \mid 0 \leq x \leq 2 , \frac { 1 } { 2 } x \leq y \leq 3 - x \right\} .

(Multiple Choice)
4.9/5
(40)

Rewrite Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral with y as the variable of integration in the outer integral, where R is the region shown below.  Rewrite  \iint _ { R } f ( x , y ) d A  as an iterated integral with y as the variable of integration in the outer integral, where R is the region shown below.

(Essay)
4.9/5
(29)

Rewrite the integral 01x1+1x2xdydx\int _ { 0 } ^ { 1 } \int _ { x } ^ { 1 + \sqrt { 1 - x ^ { 2 } } } x d y d x in terms of polar coordinates, then evaluate the integral.

(Essay)
4.9/5
(28)

Find the Jacobian of the transformation x=uv2x = u - v ^ { 2 } , y=u+v2y = u + v ^ { 2 } .

(Short Answer)
5.0/5
(43)

Evaluate the triple integral Ex2+y2+z2dV\iiint _ { E } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d V in spherical coordinates, where E is the solid bounded by the hemisphere z=4x2y2z = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } and the plane z = 0.

(Multiple Choice)
4.9/5
(45)

Evaluate ze(x2+y2+z2)3/2dV\iiint _ { z } e ^ { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 3 / 2 } } d V , where E is the solid bounded by the sphere x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 and the cone z=13x2+y2z = \frac { 1 } { \sqrt { 3 } } \sqrt { x ^ { 2 } + y ^ { 2 } } .

(Short Answer)
4.7/5
(27)

Evaluate the iterated integral 02/2x1x2sin(π(x2+y2))dydx\int _ { 0 } ^ { \sqrt { 2 } / 2 } \int _ { x } ^ { \sqrt { 1 - x ^ { 2 } } } \sin \left( \pi \left( x ^ { 2 } + y ^ { 2 } \right) \right) d y d x by converting to polar coordinates.

(Multiple Choice)
4.8/5
(38)

Find the y-coordinate of the center of mass of the lamina that occupies the region D={(x,y)0x1,0y1}D = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 1 \} and whose density function at any point is the distance from that point to the y-axis.

(Multiple Choice)
4.9/5
(37)

Write Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral in polar coordinates, where R is the region shown below.  Write  \iint _ { R } f ( x , y ) d A  as an iterated integral in polar coordinates, where R is the region shown below.

(Essay)
4.8/5
(27)

Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane. Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.

(Short Answer)
4.9/5
(26)

Evaluate the iterated integral 0x01xsinydxdy\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } x \sin y d x d y .

(Multiple Choice)
4.8/5
(36)
Showing 101 - 120 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)