Exam 12: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Suppose X and Y are random variables whose density function is given by f(x,y)={0.2e(05x+0.4y) if x0,y00 otherwise f ( x , y ) = \left\{ \begin{array} { c l } 0.2 e ^ { - ( 05 x + 0.4 y ) } & \text { if } x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. is a joint density function.

(Multiple Choice)
4.9/5
(31)

Sketch the region E whose volume is given by the integral 02xx/65x/61/sinϕ2β2sinϕdρdϕdθ\int _ { 0 } ^ { 2 x } \int _ { x / 6 } ^ { 5 x / 6 } \int _ { 1 / \sin \phi } ^ { 2 } \beta ^ { 2 } \sin \phi d \rho d \phi d \theta .  Sketch the region E whose volume is given by the integral  \int _ { 0 } ^ { 2 x } \int _ { x / 6 } ^ { 5 x / 6 } \int _ { 1 / \sin \phi } ^ { 2 } \beta ^ { 2 } \sin \phi d \rho d \phi d \theta  .

(Essay)
4.8/5
(32)

Use the change of variables u=xyu = x y , v=xy2v = x y ^ { 2 } to evaluate Ry2dA\iint _ { R } y ^ { 2 } d A , where R is the region bounded by the curves xy = 1, xy = 2, xy2=1x y ^ { 2 } = 1 , and xy2=2x y ^ { 2 } = 2 .

(Short Answer)
4.9/5
(40)

Use polar coordinates to evaluate 0101x2e(x2+y2)dydx\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } e ^ { - \left( x ^ { 2 } + y ^ { 2 } \right) } d y d x .

(Essay)
4.8/5
(29)

Find the z-coordinate of the centroid of the solid E bounded by the cone z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } and the plane z=2z = 2 .

(Short Answer)
4.8/5
(41)

Let E be the part of the solid ellipsoid x2+y2+4z29x ^ { 2 } + y ^ { 2 } + 4 z ^ { 2 } \leq 9 that lies in the first octant above the plane z = 1.(a) Express the triple integral ZyzdV\iiint _ { Z } \frac { y } { z } d V as an iterated integral in rectangular coordinates.(b) Express the triple integral ZyzdV\iiint _ { Z } \frac { y } { z } d V as an iterated integral in cylindrical coordinates.(c) Express the triple integral ZyzdV\iiint _ { Z } \frac { y } { z } d V as an iterated integral in spherical coordinates.

(Essay)
4.9/5
(30)

Find the volume of the solid formed by the intersection of the cylinder y=x2y = x ^ { 2 } and the two planes given by z = 0 and y + z = 4.

(Short Answer)
4.9/5
(43)

Find the volume of the solid bounded by the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and the plane z=4z = 4 .

(Multiple Choice)
4.9/5
(45)

Evaluate 55025x2025x2y2(x2+y2+z2)1/3dzdydx\int _ { - 5 } ^ { 5 } \int _ { 0 } ^ { \sqrt { 25 - x ^ { 2 } } } \int _ { 0 } ^ { \sqrt { 25 - x ^ { 2 } - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 1 / 3 } d z d y d x by changing to spherical coordinates.

(Short Answer)
4.9/5
(35)

Evaluate the iterated integral 1101x2sin(π(x2+y2))dydx\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \sin \left( \pi \left( x ^ { 2 } + y ^ { 2 } \right) \right) d y d x by converting to polar coordinates.

(Multiple Choice)
4.9/5
(38)

Find the area of that part of the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 that lies above the plane z = 1.

(Short Answer)
4.7/5
(28)

Find the area of the part of the cylinder y2+z2=9y ^ { 2 } + z ^ { 2 } = 9 that is above the rectangle R = [0, 2] ×\times [3, 3].

(Multiple Choice)
4.8/5
(41)

Compute the area of that part of the graph of 3z=5+2x3/2+4y3/23 z = 5 + 2 x ^ { 3 / 2 } + 4 y ^ { 3 / 2 } which lies above the rectangular region in the first quadrant of the xy-plane bounded by the lines x = 0, x = 3, y = 0, and y = 6.

(Essay)
4.8/5
(37)

Evaluate D1x2+y2+1dA\iint _ { D } \frac { 1 } { \sqrt { x ^ { 2 } + y ^ { 2 } + 1 } } d A , where D is the region that lies between the circles x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 .

(Essay)
4.9/5
(40)

Use the change of variables x=2u23vx = \sqrt { 2 } u - \sqrt { \frac { 2 } { 3 } } v , y=2u+23vy = \sqrt { 2 } u + \sqrt { \frac { 2 } { 3 } } v to evaluate R(x2xy+y2)dA\iint _ { R } \left( x ^ { 2 } - x y + y ^ { 2 } \right) d A , where R is the region bounded by the ellipse x2xy+y2=2x ^ { 2 } - x y + y ^ { 2 } = 2 .

(Short Answer)
4.8/5
(25)

Use a double integral to find the volume of the solid bounded by the planes x+4y+3z=12x + 4 y + 3 z = 12 , x=0x = 0 , y=0y = 0 , and z=0z = 0 .

(Short Answer)
4.8/5
(39)

Set up the triple integral for f(x,y,z)=πx3f ( x , y , z ) = \pi x ^ { 3 } over the solid E with vertices (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0), and (1, 1, 1).

(Essay)
4.8/5
(34)

Evaluate 121x2xydydx\int _ { 1 } ^ { 2 } \int _ { 1 } ^ { x ^ { 2 } } \frac { x } { y } d y d x .

(Short Answer)
4.7/5
(32)

Evaluate the triple integral EzdV\iiint _ { E } z d V , where E is the wedge in the first octant bounded by y2+z2=1y ^ { 2 } + z ^ { 2 } = 1 , y = x, and the yz-plane.

(Multiple Choice)
4.7/5
(34)

Evaluate the iterated integral 010x0ydxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } \int _ { 0 } ^ { y } d x d y d z .

(Multiple Choice)
4.9/5
(32)
Showing 121 - 140 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)