Exam 12: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the mass of the lamina that occupies the region D={(x,y)0x1,0y1}D = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 1 \} and has density function p(x, y) = x.

(Multiple Choice)
4.8/5
(25)

Suppose X and Y are random variables. Find k such that the function f(x,y)={0.1e(x+0.4y) if x0,y00 otherwise f ( x , y ) = \left\{ \begin{array} { c l } 0.1 e ^ { - ( \mid x + 0.4 y ) } & \text { if } x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. is a joint density function.

(Multiple Choice)
4.8/5
(39)

Compute the average value of f(x,y)=3+xy2f ( x , y ) = 3 + x y ^ { 2 } over R=[2,2]×[0,1]R = [ - 2,2 ] \times [ 0,1 ] .

(Short Answer)
4.9/5
(37)

Find the x-coordinate of the center of mass of the lamina that occupies the region D={(x,y)0x1,x2y1}D = \left\{ ( x , y ) \mid 0 \leq x \leq 1 , x ^ { 2 } \leq y \leq 1 \right\} and has density function p(x, y) = x + y.

(Multiple Choice)
4.8/5
(33)

Evaluate the iterated integral 2502x4x2dxdy\int _ { 2 } ^ { 5 } \int _ { 0 } ^ { 2 } x \sqrt { 4 - x ^ { 2 } } d x d y .

(Multiple Choice)
4.9/5
(30)

Find the area of the part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 between the planes z = 1 and z = 2.

(Multiple Choice)
4.8/5
(32)

Evaluate the iterated integral 02x011y24r2dzdrdθ\int _ { 0 } ^ { 2 x } \int _ { 0 } ^ { 1 } \int _ { 1 - y ^ { 2 } } ^ { 4 } r ^ { 2 } d z d r d \theta .

(Multiple Choice)
4.9/5
(38)

Evaluate the double integral Rycos(xy)dA\iint _ { R } y \cos ( x y ) d A , where R={(x,y)0x1,0yπ}R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq \pi \} .

(Multiple Choice)
4.9/5
(27)

Calculate the double integral Rxy2+yxdA\iint _ { R } x y ^ { 2 } + \frac { y } { x } d A , where R={(x,y)2x3,1y0}R = \{ ( x , y ) \mid 2 \leq x \leq 3 , - 1 \leq y \leq 0 \} .

(Essay)
4.9/5
(35)

Evaluate R(x+y)ex2y2dA\iint _ { R } ( x + y ) e ^ { x ^ { 2 } - y ^ { 2 } } d A ,where R is the rectangular region bounded by the lines x + y = 0, x + y = 1, x - y = 0, and x - y = 1.

(Short Answer)
4.8/5
(33)

The joint density function for a pair of random variables X and Y is f(x,y)={Cxy if 0x1 and 1y20 otherwise f ( x , y ) = \left\{ \begin{array} { l l } C \frac { x } { y } & \text { if } 0 \leq x \leq 1 \text { and } 1 \leq y \leq 2 \\0 & \text { otherwise }\end{array} \right. . Find the value of C.

(Short Answer)
5.0/5
(38)

Electric charge is distributed over the unit disk x2+y21x ^ { 2 } + y ^ { 2 } \leq 1 so that the charge density at (x, y) is σ(x,y)=1+x2+y2\sigma ( x , y ) = 1 + x ^ { 2 } + y ^ { 2 } (measured in coulombs per square meter). Find the total charge on the disk.

(Short Answer)
4.8/5
(43)

Find the volume of the solid bounded by the paraboloids z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z=2x2y2z = 2 - x ^ { 2 } - y ^ { 2 } .

(Short Answer)
4.8/5
(39)

Suppose X and Y are random variables whose density function is given by f(x,y)={0.2e(0.5x+0.4y) if x0,y00 otherwise f ( x , y ) = \left\{ \begin{array} { l l } 0.2 e ^ { - ( 0.5 x + 0.4 y ) } & \text { if } x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. . Find the probability P(X1,Y2)P ( X \leq 1 , Y \leq 2 ) .

(Essay)
4.8/5
(29)

Find the area of the part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 above the plane z = 2.

(Multiple Choice)
4.8/5
(30)

Evaluate the integral R(x2+y2)dA\iint _ { R } \left( x ^ { 2 } + y ^ { 2 } \right) d A , where R is the disk with center the origin and radius 1.

(Multiple Choice)
4.8/5
(32)

Set up, but do not evaluate, the integral to find the surface area of the portion of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 between the planes z = 1 and z = 2.

(Essay)
4.9/5
(28)

Find the volume under the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } above the region bounded by the x-axis, the y-axis, and the line x + y = 1.

(Multiple Choice)
4.8/5
(33)

Evaluate the double integral Ry(x+Y)2dA\iint _ { R } \frac { y } { ( x + Y ) ^ { 2 } } d A , where R={(x,y)1x2,1y2}R = \{ ( x , y ) \mid 1 \leq x \leq 2,1 \leq y \leq 2 \} .

(Multiple Choice)
4.9/5
(30)

Find the area of the part of the plane x + z = 4 that lies above the square with vertices (0, 0), (1, 0), (0, 1), and (1, 1).

(Multiple Choice)
4.9/5
(29)
Showing 41 - 60 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)