Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use various trigonometric identities to simplify the expression then integrate. - cos7θsin2θdθ\int \cos ^ { 7 } \theta \sin 2 \theta d \theta

(Multiple Choice)
4.9/5
(40)

Evaluate the improper integral. - 025dxx16\int _ { 0 } ^ { 25 } \frac { d x } { \sqrt { | x - 16 | } }

(Multiple Choice)
5.0/5
(41)

Find the value of the constant k so that the given function in a probability density function for a random variable over the specified interval. - f(x)=kxf ( x ) = k ^ { x } over [0,20][ 0,20 ]

(Multiple Choice)
4.8/5
(39)

Solve the problem by integration. -The force F\mathrm { F } (in N) applied by a stamping machine in making a certain computer part is F=3xx2+11x+12\mathrm { F } = \frac { 3 \mathrm { x } } { \mathrm { x } ^ { 2 } + 11 \mathrm { x } + 12 } , where x\mathrm { x } is the distance (in cm\mathrm { cm } ) through which the force acts. Find the work done by the force from x=0\mathrm { x } = 0 to x=0.6 cm\mathrm { x } = 0.6 \mathrm {~cm} .

(Multiple Choice)
4.8/5
(46)

Evaluate the integral. - 1xlnx6dx\int \frac { 1 } { x \ln x ^ { 6 } } d x

(Multiple Choice)
4.8/5
(43)

Solve the initial value problem for y as a function of x. - x24dydx=x,x>2,y(4)=0\sqrt { x ^ { 2 } - 4 } \frac { d y } { d x } = x , x > 2 , y ( 4 ) = 0

(Multiple Choice)
4.8/5
(45)

Solve the problem. -Suppose a brewery has a filling machine that fills 12 ounce bottles of beer. It is known that the amount of beer poured by this filling machine follows a normal distribution with a mean of 12.14 onces and a standard Deviation of 0.04 ounce. Find the probability that the bottle contains more than 12.14 ounces of beer.

(Multiple Choice)
4.8/5
(36)

Provide an appropriate response. -  The "Simpson" sum is based upon the area under a ?\text { The "Simpson" sum is based upon the area under a } \underline { ? } \text {. }

(Multiple Choice)
4.9/5
(43)

Solve the initial value problem for y as a function of x. - xdydx=x29,x3,y(3)=0x \frac { d y } { d x } = \sqrt { x ^ { 2 } - 9 } , x \geq 3 , y ( 3 ) = 0

(Multiple Choice)
4.8/5
(36)

Evaluate the integral by making a substitution (possibly trigonometric) and then applying a reduction formula. - dx(25x2)2\int \frac { d x } { \left( 25 - x ^ { 2 } \right) ^ { 2 } }

(Multiple Choice)
4.8/5
(46)

Determine whether the improper integral converges or diverges. - 1dxx2/5+2\int _ { 1 } ^ { \infty } \frac { d x } { x ^ { 2 / 5 } + 2 }

(Multiple Choice)
4.8/5
(26)

Use reduction formulas to evaluate the integral. - sin23xcos23xdx\int \sin ^ { 2 } 3 x \cos ^ { 2 } 3 x d x

(Multiple Choice)
4.8/5
(31)

Use reduction formulas to evaluate the integral. - 8cos32xdx\int 8 \cos ^ { 3 } 2 x d x

(Multiple Choice)
4.9/5
(36)

Expand the quotient by partial fractions. - x+4x2+2x+1\frac { x + 4 } { x ^ { 2 } + 2 x + 1 }

(Multiple Choice)
4.9/5
(43)

Solve the problem. -Find an upper bound for ET\left| \mathrm { E } _ { \mathrm { T } } \right| in estimating 15(3x2+8)dx\int _ { 1 } ^ { 5 } \left( 3 \mathrm { x } ^ { 2 } + 8 \right) \mathrm { dx } with n=6\mathrm { n } = 6 steps.

(Multiple Choice)
4.9/5
(44)

Provide an appropriate response. -(a) Find the values of pp for which 011xpdx\int _ { 0 } ^ { 1 } \frac { 1 } { x p } d x converges. (b) Find the values of pp for which 011xpdx\int _ { 0 } ^ { 1 } \frac { 1 } { x _ { p } } d x diverges.

(Essay)
4.7/5
(40)

Integrate the function. - dx25x2121,x>115\int \frac { d x } { \sqrt { 25 x ^ { 2 } - 121 } } , x > \frac { 11 } { 5 }

(Multiple Choice)
4.9/5
(39)

Evaluate the integral. -Use the formula f1(x)dx=xf1(x)x(ddxf1(x))dx\int f ^ { - 1 } ( x ) d x = x f ^ { - 1 } ( x ) - \int x \left( \frac { d } { d x } f ^ { - 1 } ( x ) \right) d x to evaluate the integral. cot1xdx\int \cot ^ { - 1 } x d x

(Multiple Choice)
4.8/5
(40)

Use Simpson's Rule with n = 4 steps to estimate the integral. - 10sinπtdt\int _ { - 1 } ^ { 0 } \sin \pi \mathrm { tdt }

(Multiple Choice)
4.7/5
(36)

Determine whether the improper integral converges or diverges. - dx5x6+1\int _ { - \infty } ^ { \infty } \frac { d x } { \sqrt { 5 x ^ { 6 } + 1 } }

(Multiple Choice)
4.8/5
(30)
Showing 441 - 460 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)