Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Integrate the function. - 28dxx2x2+16\int \frac { 28 d x } { x ^ { 2 } \sqrt { x ^ { 2 } + 16 } }

(Multiple Choice)
4.9/5
(37)

Determine whether the improper integral converges or diverges. - 02dxx1dx\int _ { 0 } ^ { 2 } \frac { d x } { | x - 1 | } d x

(Multiple Choice)
4.9/5
(43)

Solve the problem by integration. -The current i\mathrm { i } (in A) as a function of the time tt (in s) in a certain electric circuit is given by i=8t+44t2+4t+1i = \frac { 8 t + 4 } { 4 t ^ { 2 } + 4 t + 1 } . Find the total charge that passes a given point in the circuit during the first second.

(Multiple Choice)
4.9/5
(43)

Evaluate the integral. -Use the formula f1(x)dx=xf1(x)f(y)dy,y=f1(x)\int f ^ { - 1 } ( x ) d x = x f ^ { - 1 } ( x ) - \int f ( y ) d y , y = f ^ { - 1 } ( x ) to evaluate the integral. cot1xdx\int \cot ^ { - 1 } x d x

(Multiple Choice)
4.9/5
(42)

Use the Trapezoidal Rule with n = 4 steps to estimate the integral. - 13(6x+4)dx\int _ { 1 } ^ { 3 } ( 6 x + 4 ) d x

(Multiple Choice)
4.8/5
(46)

Solve the problem. -There are 3 balls in a hat; one with the number 3 on it, one with the number 4 on it, and one with the number 7 on it. You pick a ball from the hat at random and then you flip a coin to obtain heads (H) or tails (T). Determine The set of possible outcomes.

(Multiple Choice)
4.8/5
(27)

Solve the problem. -The length of one arch of the curve y=3sin2xy = 3 \sin 2 x is given by L=0π/21+36cos22xdxL = \int _ { 0 } ^ { \pi / 2 } \sqrt { 1 + 36 \cos ^ { 2 } 2 x } d x Estimate L\mathrm { L } by the Trapezoidal Rule with n=6\mathrm { n } = 6 .

(Multiple Choice)
4.9/5
(37)

Integrate the function. - dx(x264)3/2,x>8\int \frac { d x } { \left( x ^ { 2 } - 64 \right) ^ { 3 / 2 } } , x > 8

(Multiple Choice)
4.8/5
(40)

Provide an appropriate response. -The error formula for the Trapezoidal Rule depends upon i) f(x)f ( x ) . ii) f(x)f ^ { \prime } ( x ) . iii) f(x)f ^ { \prime \prime } ( x ) . iv) the number of steps

(Multiple Choice)
4.8/5
(32)

Solve the problem by integration. -Under specified conditions, the time tt (in min) required to form xx grams of a substance during a chemical reaction is given by t=dx(7x)(2x)t = \int \frac { d x } { ( 7 - x ) ( 2 - x ) } . Find the equation relating tt and xx if x=0gx = 0 g when t=0t = 0 min.

(Multiple Choice)
4.8/5
(32)

Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of partial fractions. - 7x3+7x2+2x2+xdx\int \frac { 7 x ^ { 3 } + 7 x ^ { 2 } + 2 } { x ^ { 2 } + x } d x

(Multiple Choice)
4.8/5
(34)

Use a trigonometric substitution to evaluate the integral. - dxxx29\int \frac { d x } { x \sqrt { x ^ { 2 } - 9 } }

(Multiple Choice)
5.0/5
(42)

Evaluate the integral by making a substitution (possibly trigonometric) and then applying a reduction formula. - sec3θθdθ\int \frac { \sec ^ { 3 } \sqrt { \theta } } { \sqrt { \theta } } \mathrm { d } \theta

(Multiple Choice)
4.9/5
(37)

Use a trigonometric substitution to evaluate the integral. - 0ln3etdt25+e2t\int _ { 0 } ^ { \ln 3 } \frac { e ^ { t } d t } { 25 + e ^ { 2 t } }

(Multiple Choice)
4.7/5
(25)

Solve the problem. -Find an upper bound for ES\left| E _ { S } \right| in estimating 241x1dx\int _ { 2 } ^ { 4 } \frac { 1 } { x - 1 } d x with n=8n = 8 steps.

(Multiple Choice)
4.8/5
(35)

Evaluate the improper integral. - 09dx81x2\int _ { 0 } ^ { 9 } \frac { d x } { \sqrt { 81 - x ^ { 2 } } }

(Multiple Choice)
4.7/5
(48)

Expand the quotient by partial fractions. - 6zz32z28z\frac { 6 z } { z ^ { 3 } - 2 z ^ { 2 } - 8 z }

(Multiple Choice)
4.7/5
(35)

Evaluate the improper integral or state that it is divergent. - 036(1+tan1x)1+x2dx\int _ { 0 } ^ { \infty } \frac { 36 \left( 1 + \tan ^ { - 1 } x \right) } { 1 + x ^ { 2 } } d x

(Multiple Choice)
4.9/5
(34)

Find the area or volume. -Find the volume of the solid generated by revolving the area under y=8exy = 8 \mathrm { e } ^ { - \mathrm { x } } in the first quadrant about the x\mathrm { x } -axis

(Multiple Choice)
4.9/5
(42)

Solve the problem. -Find the area of the region enclosed by y=5xsinxy = 5 x \sin x and the xx -axis for 0xπ0 \leq x \leq \pi .

(Multiple Choice)
4.9/5
(35)
Showing 181 - 200 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)