Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use the Trapezoidal Rule with n = 4 steps to estimate the integral. - 02(x4+8)dx\int _ { 0 } ^ { 2 } \left( x ^ { 4 } + 8 \right) d x

(Multiple Choice)
4.9/5
(41)

Express the integrand as a sum of partial fractions and evaluate the integral. - 2x2+x+1(x2+3)(x5)dx\int \frac { 2 x ^ { 2 } + x + 1 } { \left( x ^ { 2 } + 3 \right) ( x - 5 ) } d x

(Multiple Choice)
4.9/5
(33)

Evaluate the improper integral or state that it is divergent. - 5dtt24t\int _ { 5 } ^ { \infty } \frac { d t } { t ^ { 2 } - 4 t }

(Multiple Choice)
4.8/5
(34)

Solve the problem. -Suppose that the accompanying table shows the velocity of a car every second for 8 seconds. Use the Trapezoidal Rule to approximate the distance traveled by the car in the 8 seconds. Round your answer to the nearest tenth if necessary. Time (sec) Velocity (ft/sec) 0 17 1 18 2 19 3 21 4 20 5 22 6 19 7 17 8 18

(Multiple Choice)
4.8/5
(32)

Evaluate the improper integral. - 049dx49x\int _ { 0 } ^ { 49 } \frac { d x } { \sqrt { 49 - x } }

(Multiple Choice)
4.9/5
(32)

Evaluate the integral. - π/12π/6cot43tdt\int _ { \pi / 12 } ^ { \pi / 6 } \cot ^ { 4 } 3 t d t

(Multiple Choice)
4.8/5
(40)

Provide an appropriate response. -The standard normal probability density function is defined by f(x)=12πex2/2f ( x ) = \frac { 1 } { \sqrt { 2 \pi } } e ^ { - x ^ { 2 } / 2 } . (a) Use the fact that 12πex2/2dx=1\int _ { - \infty } ^ { \infty } \frac { 1 } { \sqrt { 2 \pi } } e ^ { - } x ^ { 2 } / 2 d x = 1 to show that 012πx2ex2/2dx=12\int _ { 0 } ^ { \infty } \frac { 1 } { \sqrt { 2 \pi } } x ^ { 2 } e ^ { - x ^ { 2 } / 2 } \mathrm { dx } = \frac { 1 } { 2 } . (b) Use the result in part (a) to show that the standard normal probability density function has variance 1.1 .

(Essay)
4.7/5
(36)

Integrate the function. - dxx16x236\int \frac { d x } { x \sqrt { 16 x ^ { 2 } - 36 } }

(Multiple Choice)
4.9/5
(34)

Solve the problem. -Find the volume of the solid generated by revolving the region in the first quadrant bounded by y=exy = e ^ { x } and the xx -axis, from x=0x = 0 to x=ln3x = \ln 3 , about the yy -axis.

(Multiple Choice)
4.8/5
(47)

Evaluate the integral. - 8xexdx\int 8 x e ^ { x } d x

(Multiple Choice)
4.8/5
(36)

Provide an appropriate response. -Let f(x)=1x2,x1f ( x ) = \frac { 1 } { x ^ { 2 } } , x \geq 1 (a) Find the area of the region between the graph of y=f(x)y = f ( x ) and the xx -axis. (b) If the region described in part (a) is revolved about the x-axis, what is the volume of the solid that is generated? (c) A surface is generated by revolving the graph of y=f(x)y = f ( x ) about the xx -axis. Write an integral expression for the surface area and show that the integral converges. (d) Use numerical techniques to estimate the area of the region in part (c), to an accuracy of at least two decimal places.

(Essay)
4.8/5
(35)

Evaluate the improper integral or state that it is divergent. - 0dx(25+x)x\int _ { - \infty } ^ { 0 } \frac { d x } { ( 25 + x ) \sqrt { x } }

(Multiple Choice)
4.9/5
(38)

Find the surface area or volume. -Use an integral table and a calculator to find to two decimal places the area of the surface generated by revolving the curve y=x2,1x3y = x ^ { 2 } , - 1 \leq x \leq 3 , about the xx -axis.

(Multiple Choice)
4.8/5
(29)

Use Simpson's Rule with n = 4 steps to estimate the integral. - 02(x4+4)dx\int _ { 0 } ^ { 2 } \left( x ^ { 4 } + 4 \right) d x

(Multiple Choice)
4.7/5
(41)

Evaluate the improper integral. - 918/3dttt281\int _ { 9 } ^ { 18 / \sqrt { 3 } } \frac { d t } { t \sqrt { t ^ { 2 } - 81 } }

(Multiple Choice)
4.9/5
(34)

Find the surface area or volume. -The region between the curve y=sinx,0x1.9y = \sin x , 0 \leq x \leq 1.9 , and the xx -axis is revolved about the xx -axis to generate a solid. Use a table of integrals to find, to two decimal places, the volume of the solid generated.

(Multiple Choice)
4.7/5
(30)

Evaluate the integral. - 0π1cos2xdx\int _ { 0 } ^ { \pi } \sqrt { 1 - \cos ^ { 2 } x } d x

(Multiple Choice)
4.8/5
(36)

Evaluate the integral. - xsin1xdx\int x \sin ^ { - 1 } x d x

(Multiple Choice)
4.8/5
(33)

Evaluate the improper integral or state that it is divergent. - 02dx64+x2\int _ { 0 } ^ { \infty } \frac { 2 d x } { 64 + x ^ { 2 } }

(Multiple Choice)
4.9/5
(41)

Use reduction formulas to evaluate the integral. - 3cos3xsin6xdx\int 3 \cos ^ { 3 } x \sin ^ { 6 } x d x

(Multiple Choice)
4.9/5
(29)
Showing 221 - 240 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)