Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate the integral by making a substitution and then using a table of integrals. - exe2x25dx\int \frac { e ^ { x } } { e ^ { 2 x } - 25 } d x

(Multiple Choice)
4.9/5
(38)

Evaluate the integral. - 1e3ln3(x3)xdx\int _ { 1 } ^ { \mathrm { e } ^ { 3 } } \frac { \ln ^ { 3 } \left( \mathrm { x } ^ { 3 } \right) } { \mathrm { x } } \mathrm { dx }

(Multiple Choice)
4.9/5
(35)

Evaluate the integral. - 0π1cos2xdx\int _ { 0 } ^ { \pi } \sqrt { 1 - \cos 2 x } d x

(Multiple Choice)
4.8/5
(39)

Provide an appropriate response. -(a) Show that 2e2xdx=12e4<0.0092\int _ { 2 } ^ { \infty } e ^ { - 2 x } \mathrm { dx } = \frac { 1 } { 2 } \mathrm { e } ^ { - 4 } < 0.0092 and hence that 2ex2dx<0.0092\int _ { 2 } ^ { \infty } \mathrm { e } ^ { - \mathrm { x } ^ { 2 } } \mathrm { dx } < 0.0092 . (b) Explain why this means that 0ex2dx\int _ { 0 } ^ { \infty } \mathrm { e } ^ { - \mathrm { x } ^ { 2 } } \mathrm { dx } can be replaced by 02ex2dx\int _ { 0 } ^ { 2 } \mathrm { e } ^ { - \mathrm { x } ^ { 2 } } \mathrm { dx } without introducing an error of magnitude greater than 0.0092.0.0092 .

(Essay)
4.9/5
(39)

Solve the problem. -Find an upper bound for ET\left| \mathrm { E } _ { \mathrm { T } } \right| in estimating 0π4xsinxdx\int _ { 0 } ^ { \pi } 4 \mathrm { x } \sin \mathrm { x } \mathrm {} \mathrm { dx } with n=6\mathrm { n } = 6 steps. Give your answer as a decimal rounded to four decimal places.

(Multiple Choice)
4.9/5
(39)

Evaluate the integral by making a substitution and then using a table of integrals. - xdx25x2+20x+4\int \frac { x d x } { 25 x ^ { 2 } + 20 x + 4 }

(Multiple Choice)
4.8/5
(37)

Solve the problem by integration. -By a computer analysis, the electric current i (in A) in a certain circuit is given by i =0.0040(8t2+15t+75)(t+5)(t2+15)= \frac { 0.0040 \left( 8 t ^ { 2 } + 15 t + 75 \right) } { ( t + 5 ) \left( t ^ { 2 } + 15 \right) } , where tt is the time (in s). Find the total charge that passes a point in the circuit in the first 0.25 s0.25 \mathrm {~s} .

(Multiple Choice)
4.9/5
(38)

Express the integrand as a sum of partial fractions and evaluate the integral. - x+9x2+6xdx\int \frac { x + 9 } { x ^ { 2 } + 6 x } d x

(Multiple Choice)
4.9/5
(32)

Evaluate the integral by making a substitution and then using a table of integrals. - lnxx(2+lnx)dx\int \frac { \ln x } { x ( 2 + \ln x ) } d x

(Multiple Choice)
4.8/5
(30)

Determine whether the improper integral converges or diverges. - 18exlnxdx\int _ { 1 } ^ { \infty } \frac { 8 \mathrm { e } ^ { x } } { \ln x } d x

(Multiple Choice)
4.9/5
(36)

Find the area or volume. -Find the volume of the solid generated by revolving the area under y=6exy = 6 e ^ { - x } in the first quadrant about the y-axis.

(Multiple Choice)
4.9/5
(40)

Solve the problem. -Find the length of the curve y=ln(cscx),π/3xπ/2y = \ln ( \csc x ) , \pi / 3 \leq x \leq \pi / 2

(Multiple Choice)
4.9/5
(34)

Use integration by parts to establish a reduction formula for the integral. - tannxdx,n1\int \tan ^ { n } x d x , n \neq 1

(Multiple Choice)
4.8/5
(43)

Use integration by parts to establish a reduction formula for the integral. - secnxdx,n1\int \sec ^ { n } x d x , n \neq 1

(Multiple Choice)
4.8/5
(42)

Determine whether the improper integral converges or diverges. - 910dx(x+1)1/3\int _ { - 9 } ^ { 10 } \frac { d x } { ( x + 1 ) ^ { 1 / 3 } }

(Multiple Choice)
4.7/5
(32)

Evaluate the integral. - costdtsin2t4sint+3\int \frac { \cos t d t } { \sin ^ { 2 } t - 4 \sin t + 3 }

(Multiple Choice)
4.8/5
(39)

Provide an appropriate response. -A student claims that abf(x)dx\int _ { a } ^ { b } \mathrm { f } ( \mathrm { x } ) \mathrm { dx } always exists, as long as a and b are both positive. Refute this by giving an example of a function for which this is not true.

(Essay)
4.8/5
(43)

Use a CAS to perform the integration. - x6lnxdx\int x ^ { 6 } \ln x d x

(Multiple Choice)
4.8/5
(39)

Solve the initial value problem for y as a function of x. - (36x2)dydx=1,y(0)=3\left( 36 - x ^ { 2 } \right) \frac { d y } { d x } = 1 , y ( 0 ) = 3

(Multiple Choice)
4.8/5
(35)

Express the integrand as a sum of partial fractions and evaluate the integral. - 01x3x2+6x+9dx\int _ { 0 } ^ { 1 } \frac { x ^ { 3 } } { x ^ { 2 } + 6 x + 9 } d x

(Multiple Choice)
4.9/5
(37)
Showing 161 - 180 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)