Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the indicated probability. - f(x)=cosx over [0,π2],P(π7xπ3)f ( x ) = \cos x \text { over } \left[ 0 , \frac { \pi } { 2 } \right] , \mathrm { P } \left( \frac { \pi } { 7 } \leq x \leq \frac { \pi } { 3 } \right)

(Multiple Choice)
4.9/5
(41)

Evaluate the integral. -Use the formula f1(x)dx=xf1(x)f(y)dy,y=f1(x)\int f ^ { - 1 } ( x ) d x = x f ^ { - 1 } ( x ) - \int f ( y ) d y , y = f ^ { - 1 } ( x ) to evaluate the integral. cos1xdx\int \cos ^ { - 1 } x d x

(Multiple Choice)
4.7/5
(38)

Use Simpson's Rule with n = 4 steps to estimate the integral. - 13(2x+2)dx\int _ { 1 } ^ { 3 } ( 2 x + 2 ) d x

(Multiple Choice)
4.8/5
(34)

Solve the problem. -The amount of time that goes by between a new driver getting a license and the moment the driver is involved in an accident is exponentially distributed. An insurance company observes a sample of new drivers and finds That 60% are involved in an accident during the first 4 years after they get their driver's license. In a group of 300 New drivers, how many should the insurance company expect to be involved in an accident during the first 6.0 Years after receiving their license?

(Multiple Choice)
4.9/5
(33)

Solve the problem. -Find the area of the region enclosed by the curve y=xsinxy = x \sin x and the xx -axis for 5πx6π5 \pi \leq x \leq 6 \pi .

(Multiple Choice)
4.9/5
(31)

Evaluate the integral by making a substitution and then using a table of integrals. - tant1cos2tdt\int \tan t \cdot \sqrt { 1 - \cos ^ { 2 } t } d t

(Multiple Choice)
4.8/5
(41)

Provide an appropriate response. -The "trapezoidal" sum can be calculated in terms of the left and right-hand sums as ?\underline { ? } .

(Multiple Choice)
4.7/5
(36)

Evaluate the integral by using a substitution prior to integration by parts. - (ln2x)2dx\int ( \ln 2 x ) ^ { 2 } d x

(Multiple Choice)
4.9/5
(41)

Evaluate the integral. The integral may not require integration by parts. - x4secx5dx\int x ^ { 4 } \sec x ^ { 5 } d x

(Multiple Choice)
4.9/5
(41)

Integrate the function. - 1141+16t2dt\int _ { - 1 } ^ { 1 } \frac { 4 } { 1 + 16 t ^ { 2 } } d t

(Multiple Choice)
4.9/5
(40)

Determine whether the improper integral converges or diverges. - 24(x+1)2dx\int _ { 2 } ^ { \infty } \frac { 4 } { ( x + 1 ) ^ { 2 } } d x

(Multiple Choice)
4.9/5
(43)

Integrate the function. - (4t2)3/2t6dt\int \frac { \left( 4 - t ^ { 2 } \right) ^ { 3 / 2 } } { t ^ { 6 } } d t

(Multiple Choice)
4.9/5
(30)

Solve the problem by integration. -  Find the x-coordinate of the centroid of the area bounded by y(x29)=1,y=0,x=4, and x=7\text { Find the } x \text {-coordinate of the centroid of the area bounded by } y \left( x ^ { 2 } - 9 \right) = 1 , y = 0 , x = 4 \text {, and } x = 7 \text {. }

(Multiple Choice)
4.9/5
(29)

Solve the problem. -Estimate the minimum number of subintervals needed to approximate the integral 04(7x23x)dx\int _ { 0 } ^ { 4 } \left( 7 x ^ { 2 } - 3 x \right) d x with an error of magnitude less than 10410 ^ { - 4 } using Simpson's Rule.

(Multiple Choice)
4.8/5
(32)

Find the surface area or volume. -Use numerical integration with a programmable calculator or a CAS to find, to two decimal places, the area of the surface generated by revolving the curve y=cosx,0xπ2y = \cos x , 0 \leq x \leq \frac { \pi } { 2 } , about the xx -axis.

(Multiple Choice)
4.8/5
(37)

Evaluate the integral. - 25x29xdx\int \frac { \sqrt { 25 x ^ { 2 } - 9 } } { x } d x

(Multiple Choice)
4.9/5
(41)

Evaluate the integral. - (x23x)exdx\int \left( x ^ { 2 } - 3 x \right) e ^ { x } d x

(Multiple Choice)
4.7/5
(40)

Determine whether the improper integral converges or diverges. - 1sinxx2dx\int _ { 1 } ^ { \infty } \frac { | \sin x | } { x ^ { 2 } } d x

(Multiple Choice)
4.9/5
(28)

Solve the problem. -Estimate the minimum number of subintervals needed to approximate the integral 03(2x+6)dx\int _ { 0 } ^ { 3 } ( 2 x + 6 ) d x with an error of magnitude less than 10410 ^ { - 4 } using the Trapezoidal Rule.

(Multiple Choice)
4.9/5
(44)

Determine whether the improper integral converges or diverges. - 1exsinxdx\int _ { 1 } ^ { \infty } e ^ { - x } \sin x d x

(Multiple Choice)
4.9/5
(37)
Showing 241 - 260 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)