Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Determine whether the function is a probability density function over the given interval. - f(x)={4π(x2+1)x00x<0f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { \pi \left( x ^ { 2 } + 1 \right) } & x \geq 0 \\0 & x < 0\end{array} \right.

(True/False)
4.9/5
(38)

Determine whether the function is a probability density function over the given interval. - f(x)=9x over [0,ln(1+ln9)ln9]f ( x ) = 9 ^ { x } \text { over } \left[ 0 , \frac { \ln ( 1 + \ln 9 ) } { \ln 9 } \right]

(True/False)
4.7/5
(40)

Use the Trapezoidal Rule with n = 4 steps to estimate the integral. - 0111+xdx\int _ { 0 } ^ { 1 } \frac { 1 } { 1 + x } d x

(Multiple Choice)
4.9/5
(42)

Evaluate the integral. - 14x3ln6xdx\int _ { 1 } ^ { 4 } x ^ { 3 } \ln 6 x d x

(Multiple Choice)
4.8/5
(29)

Evaluate the integral by making a substitution and then using a table of integrals. - cosθsinθ49+sin2θdθ\int \frac { \cos \theta } { \sin \theta \sqrt { 49 + \sin ^ { 2 } \theta } } d \theta

(Multiple Choice)
4.8/5
(33)

Find the indicated probability. - f(x)=ex;;[0,),P(x7)\mathrm { f } ( \mathrm { x } ) = \mathrm { e } ^ { - \mathrm { x } ; } ; [ 0 , \infty ) , \mathrm { P } ( \mathrm { x } \geq 7 )

(Multiple Choice)
4.9/5
(43)

Evaluate the integral. - cos1xdx\int \cos ^ { - 1 } x d x

(Multiple Choice)
4.9/5
(32)

Solve the problem. -The length of time it takes college students to find a parking spot in the library parking lot follows a normal distribution with a mean of 5.0 minutes and a standard deviation of 1 minute. Find the probability that a Randomly selected college student will take between 3.5 and 6.0 minutes to find a parking spot in the library lot.

(Multiple Choice)
4.7/5
(35)

Evaluate the integral. - sin4tsint3dt\int \sin 4 t \sin \frac { t } { 3 } d t

(Multiple Choice)
5.0/5
(27)

Provide an appropriate response. -(a) Express 3x1x23x10\frac { 3 x - 1 } { x ^ { 2 } - 3 x - 10 } as a sum of partial fractions. (b) Evaluate 3x1x23x10dx\int \frac { 3 x - 1 } { x ^ { 2 } - 3 x - 10 } d x . (c) Evaluate 2x23x21x23x10dx\int \frac { 2 x ^ { 2 } - 3 x - 21 } { x ^ { 2 } - 3 x - 10 } d x . (d) Find a solution to the initial value problem: dydx=3xyyx23x10,y(4)=12.\frac { d y } { d x } = \frac { 3 x y - y } { x ^ { 2 } - 3 x - 10 } , \quad y ( 4 ) = 12 .

(Essay)
4.7/5
(32)

Evaluate the integral by making a substitution and then using a table of integrals. - tan1x+2dx\int \tan ^ { - 1 } \sqrt { x + 2 } d x

(Multiple Choice)
4.8/5
(38)

Solve the problem. -Find the area between y = ln x and the x-axis from x = 1 to x = 3.

(Multiple Choice)
4.7/5
(42)

Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of partial fractions. - x3x2+2x+1dx\int \frac { x ^ { 3 } } { x ^ { 2 } + 2 x + 1 } d x

(Multiple Choice)
4.8/5
(36)

Determine whether the improper integral converges or diverges. - 3(e100x+x3)dx\int _ { - \infty } ^ { - 3 } \left( e ^ { 100 x } + x ^ { 3 } \right) d x

(Multiple Choice)
4.9/5
(41)

Evaluate the integral. - dxx49x216\int \frac { d x } { x \sqrt { 49 x ^ { 2 } - 16 } }

(Multiple Choice)
4.8/5
(38)

Solve the problem. -Find the average value of the function y=16916x2y = \frac { 16 } { \sqrt { 9 - 16 x ^ { 2 } } } over the interval from x=0x = 0 to x=38x = \frac { 3 } { 8 } .

(Multiple Choice)
4.7/5
(35)

Solve the problem. -Find the area bounded by y(36+4x2)=2,x=0,y=0y \left( 36 + 4 x ^ { 2 } \right) = 2 , x = 0 , y = 0 , and x=4x = 4 .

(Multiple Choice)
4.8/5
(41)

Evaluate the integral. -Use the formula f1(x)dx=xf1(x)x(ddxf1(x))dx\int \mathrm { f } ^ { - 1 } ( \mathrm { x } ) \mathrm { dx } = \mathrm { xf } ^ { - 1 } ( \mathrm { x } ) - \int \mathrm { x } \left( \frac { \mathrm { d } } { \mathrm { dx } } \mathrm { f } ^ { - 1 } ( \mathrm { x } ) \right) \mathrm { dx } to evaluate the integral. sin1xdx\int \sin ^ { - 1 } x d x

(Multiple Choice)
4.8/5
(36)

Evaluate the improper integral or state that it is divergent. - 04exsinxdx\int _ { - \infty } ^ { 0 } 4 e ^ { x } \sin x d x

(Multiple Choice)
4.8/5
(37)

Evaluate the integral by making a substitution (possibly trigonometric) and then applying a reduction formula. - etsec3(et2)dt\int e ^ { t } \sec ^ { 3 } \left( e ^ { t } - 2 \right) d t

(Multiple Choice)
4.8/5
(37)
Showing 261 - 280 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)