Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -A student wishes to find the integral 0+f(x)dx\int _ { 0 } ^ { + \infty } \mathrm { f } ( \mathrm { x } ) \mathrm { dx } of a function that has the property limit limxf(x)=1\lim _ { \mathrm { x } \rightarrow \infty } \mathrm { f } ( \mathrm { x } ) = 1 . Why can this not be done?

(Essay)
4.9/5
(24)

Solve the problem. -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the xx -axis and the curve y=xcosx,0xπ/2y = x \cos x , 0 \leq x \leq \pi / 2 about the yy -axis.

(Multiple Choice)
4.8/5
(34)

Use integration by parts to establish a reduction formula for the integral. - cscnxdx,n1\int \csc ^ { n } x d x , n \neq 1

(Multiple Choice)
4.8/5
(47)

Evaluate the integral. - tan54xdx\int \tan ^ { 5 } 4 x d x

(Multiple Choice)
4.9/5
(33)

Evaluate the improper integral or state that it is divergent. - e11exdx\int _ { - \infty } ^ { e } 11 e ^ { - x } d x

(Multiple Choice)
4.8/5
(38)

Integrate the function. - dxx2x225,x>5\int \frac { d x } { x ^ { 2 } \sqrt { x ^ { 2 } - 25 } } , x > 5

(Multiple Choice)
4.9/5
(31)

Solve the problem. -Find the length of the curve y=ln(sinx),π/3xπ/2y = \ln ( \sin x ) , \pi / 3 \leq x \leq \pi / 2

(Multiple Choice)
4.8/5
(31)

Evaluate the integral. - 14xsinxdx\int 14 x \sin x d x

(Multiple Choice)
4.9/5
(35)

Evaluate the integral. - 243xlnxdx\int _ { 2 } ^ { 4 } 3 x \ln x d x

(Multiple Choice)
4.9/5
(32)

Solve the problem. -Find an upper bound for ES\left| E _ { S } \right| in estimating 12(4x52x)dx\int _ { 1 } ^ { 2 } \left( 4 x ^ { 5 } - 2 x \right) d x with n=6n = 6 steps.

(Multiple Choice)
4.8/5
(42)

Evaluate the integral. - e2xx2dx\int \mathrm { e } ^ { 2 x } \mathrm { x } ^ { 2 } \mathrm { dx }

(Multiple Choice)
4.9/5
(38)

Determine whether the improper integral converges or diverges. - 15x2+3\int _ { 1 } ^ { \infty } \frac { 5 } { \sqrt { x ^ { 2 } + 3 } }

(Multiple Choice)
4.9/5
(38)

Evaluate the integral. - dxx16x2\int \frac { d x } { x \sqrt { 16 - x ^ { 2 } } }

(Multiple Choice)
4.7/5
(34)

Evaluate the integral. - 3e2t+4ete2t10et+25dt\int \frac { 3 e ^ { 2 t } + 4 e ^ { t } } { e ^ { 2 t } - 10 e ^ { t } + 25 } d t

(Multiple Choice)
4.9/5
(41)

Evaluate the integral. - 4e2t7ete3t3e2t+et3dt\int \frac { 4 e ^ { 2 t } - 7 e ^ { t } } { e ^ { 3 t } - 3 e ^ { 2 t } + e ^ { t } - 3 } d t

(Multiple Choice)
4.9/5
(38)

Solve the problem. -The length of the ellipse x=acost,y=bsint,0t2πx = a \cos t , y = b \sin t , 0 \leq t \leq 2 \pi is  Length =4a0π/21e2cos2tdt\text { Length } = 4 \mathrm { a } \int _ { 0 } ^ { \pi / 2 } \sqrt { 1 - \mathrm { e } ^ { 2 } \cos ^ { 2 } \mathrm { t } } \mathrm { dt } where e\mathrm { e } is the ellipse's eccentricity. Use Simpson's Rule with n=6n = 6 to estimate the length of the ellipse when a=2a = 2 and e=13e = \frac { 1 } { 3 } .

(Multiple Choice)
4.8/5
(36)

Determine whether the improper integral converges or diverges. - 1ex1+x2dx\int _ { 1 } ^ { \infty } \frac { e ^ { x } } { \sqrt { 1 + x ^ { 2 } } } d x

(Multiple Choice)
4.9/5
(39)

Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of partial fractions. - 6y4+3y26yy31dy\int \frac { 6 y ^ { 4 } + 3 y ^ { 2 } - 6 y } { y ^ { 3 } - 1 } d y

(Multiple Choice)
4.8/5
(40)

Determine whether the improper integral converges or diverges. - 1lnxxdx\int _ { 1 } ^ { \infty } \frac { \ln | x | } { x } d x

(Multiple Choice)
4.9/5
(37)

Use any method to evaluate the integral. - tan2xcscxdx\int \frac { \tan ^ { 2 } x } { \csc x } d x

(Multiple Choice)
4.8/5
(32)
Showing 21 - 40 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)