Exam 9: Techniques of Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Integrate the function. - y2(16y2)3/2dy\int \frac { y ^ { 2 } } { \left( 16 - y ^ { 2 } \right) ^ { 3 / 2 } } d y

(Multiple Choice)
4.8/5
(40)

Express the integrand as a sum of partial fractions and evaluate the integral. - 3x211x+4x33x2+2xdx\int \frac { 3 x ^ { 2 } - 11 x + 4 } { x ^ { 3 } - 3 x ^ { 2 } + 2 x } d x

(Multiple Choice)
4.9/5
(45)

Use reduction formulas to evaluate the integral. - 5cot3xsin2xdx\int 5 \cot ^ { 3 } x \sin ^ { 2 } x d x

(Multiple Choice)
4.8/5
(33)

For the given probability density function, over the stated interval, find the requested value. - f(x)=13x2f ( x ) = \frac { 1 } { 3 } x ^ { 2 } , over [2,4];[ - 2,4 ] ; Find the mean.

(Multiple Choice)
4.7/5
(34)

Use integration by parts to establish a reduction formula for the integral. - cotnxdx,n1\int \cot ^ { n } x d x , n \neq 1

(Multiple Choice)
4.9/5
(44)

For the given probability density function, over the stated interval, find the requested value. - f(x)={7x21x760 Otherwise ;f ( x ) = \left\{ \begin{array} { l l } \frac { 7 } { x ^ { 2 } } & 1 \leq x \leq \frac { 7 } { 6 } \\ 0 \quad & \text { Otherwise } \end{array} ; \right. Find the median.

(Multiple Choice)
4.9/5
(44)

Integrate the function. - x29xdx\int \frac { \sqrt { x ^ { 2 } - 9 } } { x } d x

(Multiple Choice)
4.9/5
(44)

Evaluate the improper integral or state that it is divergent. - 021e21xdx\int _ { 0 } ^ { \infty } 21 e ^ { - 21 x } d x

(Multiple Choice)
4.9/5
(38)

Evaluate the integral by making a substitution (possibly trigonometric) and then applying a reduction formula. - 015x2+1dx\int _ { 0 } ^ { 1 } 5 \sqrt { x ^ { 2 } + 1 } d x

(Multiple Choice)
4.8/5
(36)

Evaluate the integral by making a substitution and then using a table of integrals. - dxx(36+(lnx)2)\int \frac { d x } { x \left( 36 + ( \ln x ) ^ { 2 } \right) }

(Multiple Choice)
4.8/5
(47)

Solve the problem. -Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y=e2xy = e ^ { - 2 x } , and the line x=6x = 6 about the yy -axis.

(Multiple Choice)
4.7/5
(33)

Integrate the function. - 0481dx(81x2)3/2\int _ { 0 } ^ { 4 } \frac { 81 d x } { \left( 81 - x ^ { 2 } \right) ^ { 3 / 2 } }

(Multiple Choice)
4.9/5
(39)

Determine whether the improper integral converges or diverges. - 07dx49x2\int _ { 0 } ^ { 7 } \frac { d x } { 49 - x ^ { 2 } }

(Multiple Choice)
4.8/5
(33)

Determine whether the improper integral converges or diverges. - 09x2dx81x2\int _ { 0 } ^ { 9 } \frac { x ^ { 2 } d x } { \sqrt { 81 - x ^ { 2 } } }

(Multiple Choice)
4.9/5
(33)

Evaluate the integral by making a substitution and then using a table of integrals. - ex25e2xdx\int e ^ { x } \sqrt { 25 - e ^ { 2 x } } d x

(Multiple Choice)
4.8/5
(36)

Express the integrand as a sum of partial fractions and evaluate the integral. - 75x2+50x+3(25x2+1)2dx\int \frac { 75 x ^ { 2 } + 50 x + 3 } { \left( 25 x ^ { 2 } + 1 \right) ^ { 2 } } d x

(Multiple Choice)
4.8/5
(26)

Integrate the function. - x3x2+8dx\int \frac { x ^ { 3 } } { \sqrt { x ^ { 2 } + 8 } } d x

(Multiple Choice)
4.9/5
(23)

Provide an appropriate response. -  The Cauchy density function, f(x)=1π(1+x2), occurs in probability theory. Show that 1π(1+x2)dx=1\text { The Cauchy density function, } f ( x ) = \frac { 1 } { \pi \left( 1 + x ^ { 2 } \right) } \text {, occurs in probability theory. Show that } \int _ { - \infty } ^ { \infty } \frac { 1 } { \pi \left( 1 + x ^ { 2 } \right) } d x = 1 \text {. }

(Essay)
5.0/5
(43)

Evaluate the improper integral or state that it is divergent. - 6dxx225\int _ { 6 } ^ { \infty } \frac { d x } { x ^ { 2 } - 25 }

(Multiple Choice)
4.9/5
(39)

Solve the problem. -Find the area between y=(x2)exy = ( x - 2 ) e ^ { x } and the xx -axis from x=2x = 2 to x=5x = 5 .

(Multiple Choice)
4.8/5
(29)
Showing 81 - 100 of 460
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)